Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The adult human brain in preclinical drug development

Abstract

Neurodegenerative disorders are caused by the death and dysfunction of brain cells, but despite a huge worldwide effort, no neuroprotective treatments that slow cell death currently exist. The failure of translation from animal models to humans in the clinic is due to many factors including species differences, human brain complexity, age, patient variability and disease-specific phenotypes. Additional methods are therefore required to overcome these obstacles in neuroprotective drug development. Incorporating target validation using human brain-tissue microarray screening and direct human brain-cell testing at an early preclinical stage to isolate molecules that protect the human brain may be an effective strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human brain banking.
Figure 2: The drug development process: an adult human brain preclinical platform.

Similar content being viewed by others

References

  1. Zivin, J. A., Fisher, M., DeGirolami, U., Hemenway, C. C. & Stashak, J. A. Tissue plasminogen activator reduces neurological damage after cerebral embolism. Science 230, 1289–1292 (1985).

    Article  CAS  Google Scholar 

  2. Shuaib, A. et al. NXY-059 for the treatment of acute ischemic stroke. N. Engl. J. Med. 357, 562–571 (2007).

    Article  CAS  Google Scholar 

  3. Lees, K. R. et al. Tolerability of NXY-059 at higher target concentrations in patients with acute stroke. Stroke 34, 482–487 (2003).

    Article  CAS  Google Scholar 

  4. Gordon, P. H. et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 6, 1045–1053 (2007).

    Article  CAS  Google Scholar 

  5. Fitzgerald, G. A. Opinion: anticipating change in drug development: the emerging era of translational medicine and therapeutics. Nature Rev. Drug Discov. 4, 815–818 (2005).

    Article  CAS  Google Scholar 

  6. Anisimov, V. N., Ukraintseva, S. V. & Yashin, A. I. Cancer in rodents: does it tell us about cancer in humans? Nature Rev. Cancer 5, 807–819 (2005).

    Article  CAS  Google Scholar 

  7. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).

    CAS  Google Scholar 

  8. Oberheim, N. A., Wang, X., Goldman, S. & Nedergaard, M. Astrocytic complexity distinguishes the human brain. Trends Neurosci. 29, 547–553 (2006).

    Article  CAS  Google Scholar 

  9. Bachoo, R. M. et al. Molecular diversity of astrocytes with implications for neurological disorders. Proc. Natl Acad. Sci. USA 101, 8384–8389 (2004).

    Article  CAS  Google Scholar 

  10. Block, M. L., Zecca, L. & Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nature Rev. Neurosci. 8, 57–69 (2007).

    Article  CAS  Google Scholar 

  11. Klegeris, A., McGeer, E. G. & McGeer, P. L. Therapeutic approaches to inflammation in neurodegenerative disease. Curr. Opin. Neurol. 20, 351–357 (2007).

    Article  CAS  Google Scholar 

  12. Meda, L. et al. Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650 (1995).

    Article  CAS  Google Scholar 

  13. Xiao, Q. et al. Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia. J. Neurochem. 102, 2008–19 (2007).

    Article  CAS  Google Scholar 

  14. Zhao, M. L., Liu, J. S., He, D., Dickson, D. W. & Lee, S. C. Inducible nitric oxide synthase expression is selectively induced in astrocytes isolated from adult human brain. Brain Res. 813, 402–405 (1998).

    Article  CAS  Google Scholar 

  15. Wallace, M. N., Geddes, J. G., Farquhar, D. A. & Masson, M. R. Nitric oxide synthase in reactive astrocytes adjacent to β-amyloid plaques. Exp. Neurol. 144, 266–272 (1997).

    Article  CAS  Google Scholar 

  16. Giulian, D. et al. Specific domains of β-amyloid from Alzheimer plaque elicit neuron killing in human microglia. J. Neurosci. 16, 6021–6037 (1996).

    Article  CAS  Google Scholar 

  17. Petrova, T. V., Akama, K. T. & Van Eldik, L. J. Cyclopentenone prostaglandins suppress activation of microglia: down-regulation of inducible nitric-oxide synthase by 15-deoxy-Δ12,14-prostaglandin J2 . Proc. Natl Acad. Sci. USA 96, 4668–4673 (1999).

    Article  CAS  Google Scholar 

  18. Janabi, N. Selective inhibition of cyclooxygenase-2 expression by 15-deoxy-Δ12,14-prostaglandin J2 in activated human astrocytes, but not in human brain macrophages. J. Immunol. 168, 4747–4755 (2002).

    Article  CAS  Google Scholar 

  19. Chan, G. C. et al. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J. Immunol. 175, 3846–3861 (2005).

    Article  CAS  Google Scholar 

  20. Lanosa, X. A. & Colombo, J. A. Astroglial injury in an ex vivo model: contributions to its analysis in enriched cell cultures. In Vitro Cell Dev. Biol. Anim. 43, 186–195 (2007).

    Article  Google Scholar 

  21. Flanary, B. E. & Streit, W. J. Alpha-tocopherol (vitamin E) induces rapid, nonsustained proliferation in cultured rat microglia. Glia 53, 669–674 (2006).

    Article  Google Scholar 

  22. Gibbons, H. M. et al. Cellular composition of human glial cultures from adult biopsy brain tissue. J. Neurosci. Methods 166, 89–98 (2007).

    Article  CAS  Google Scholar 

  23. Silver, J. & Miller, J. H. Regeneration beyond the glial scar. Nature Rev. Neurosci. 5, 146–156 (2004).

    Article  CAS  Google Scholar 

  24. Lim, J. H. et al. Extracellular signal-regulated kinase involvement in human astrocyte migration. Brain Res. 1164, 1–13 (2007).

    Article  CAS  Google Scholar 

  25. Sandvig, A., Berry, M., Barrett, L. B., Butt, A. & Logan, A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 46, 225–251 (2004).

    Article  Google Scholar 

  26. Simard, A. R., Soulet, D., Gowing, G., Julien, J. P. & Rivest, S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49, 489–502 (2006).

    Article  CAS  Google Scholar 

  27. Fiala, M. et al. Innate immunity and transcription of MGAT-III and Toll-like receptors in Alzheimer's disease patients are improved by bisdemethoxycurcumin. Proc. Natl Acad. Sci. USA 104, 12849–12854 (2007).

    Article  CAS  Google Scholar 

  28. Nicoll, J. A. et al. Neuropathology of human Alzheimer disease after immunization with amyloid-β peptide: a case report. Nature Med. 9, 448–452 (2003).

    Article  CAS  Google Scholar 

  29. Floden, A. M. & Combs, C. K. β-Amyloid stimulates murine postnatal and adult microglia cultures in a unique manner. J. Neurosci. 26, 4644–4648 (2006).

    Article  CAS  Google Scholar 

  30. Pouton, C. W. & Haynes, J. M. Embryonic stem cells as a source of models for drug discovery. Nature Rev. Drug Discov. 6, 605–616 (2007).

    Article  CAS  Google Scholar 

  31. Sanchez-Gonzalez, M. A., Garcia-Cabezas, M. A., Rico, B. & Cavada, C. The primate thalamus is a key target for brain dopamine. J. Neurosci. 25, 6076–6083 (2005).

    Article  CAS  Google Scholar 

  32. Dorus, S. et al. Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 1027–1040 (2004).

    Article  CAS  Google Scholar 

  33. Tippett, L. J. et al. Striosomes and mood dysfunction in Huntington's disease. Brain 130, 206–221 (2007).

    Article  Google Scholar 

  34. Watanabe, Y., Himeda, T. & Araki, T. Mechanisms of MPTP toxicity and their implications for therapy of Parkinson's disease. Med. Sci. Monit. 11, RA17–RA23 (2005).

    CAS  PubMed  Google Scholar 

  35. Hsiao, K. et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274, 99–102 (1996).

    Article  CAS  Google Scholar 

  36. Dragunow, M. et al. In situ evidence for DNA fragmentation in Huntington's disease striatum and Alzheimer's disease temporal lobes. Neuroreport 6, 1053–1057 (1995).

    Article  CAS  Google Scholar 

  37. Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    Article  CAS  Google Scholar 

  38. Miller, G. Neuroscience. The dark side of glia. Science 308, 778–781 (2005).

    Article  CAS  Google Scholar 

  39. Nagai, M. et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nature Neurosci. 10, 615–622 (2007).

    Article  CAS  Google Scholar 

  40. Connor, B. et al. Trk receptor alterations in Alzheimer's disease. Brain Res. Mol. Brain Res. 42, 1–17 (1996).

    Article  CAS  Google Scholar 

  41. Sauter, G., Simon, R. & Hillan, K. Tissue microarrays in drug discovery. Nature Rev. Drug Discov. 2, 962–972 (2003).

    Article  CAS  Google Scholar 

  42. LeBaron, M. J. et al. Ultrahigh density microarrays of solid samples. Nature Methods 2, 511–513 (2005).

    Article  CAS  Google Scholar 

  43. Sjobeck, M., Haglund, M., Persson, A., Sturesson, K. & Englund, E. Brain tissue microarrays in dementia research: white matter microvascular pathology in Alzheimer's disease. Neuropathology 23, 290–295 (2003).

    Article  Google Scholar 

  44. Curtis, M. A. et al. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315, 1243–1249 (2007).

    Article  CAS  Google Scholar 

  45. Narayan, P. J., Gibbons, H. M., Mee, E. W., Faull, R. L. & Dragunow, M. High throughput quantification of cells with complex morphology in mixed cultures. J. Neurosci. Methods 164, 339–349 (2007).

    Article  Google Scholar 

  46. Scotter, E. L., Narayan, P., Glass, M. & Dragunow, M. High throughput quantification of mutant huntingtin aggregates. J. Neurosci. Methods 171, 174–179 (2008).

    Article  CAS  Google Scholar 

  47. Ciammola, A. et al. Increased apoptosis, Huntingtin inclusions and altered differentiation in muscle cell cultures from Huntington's disease subjects. Cell Death Differ. 13, 2068–2078 (2006).

    Article  CAS  Google Scholar 

  48. Khan, T. K. & Alkon, D. L. An internally controlled peripheral biomarker for Alzheimer's disease: Erk1 and Erk2 responses to the inflammatory signal bradykinin. Proc. Natl Acad. Sci. USA 103, 13203–13207 (2006).

    Article  CAS  Google Scholar 

  49. Klegeris, A. & McGeer, P. L. Interaction of various intracellular signaling mechanisms involved in mononuclear phagocyte toxicity toward neuronal cells. J. Leukoc. Biol. 67, 127–133 (2000).

    Article  CAS  Google Scholar 

  50. Klegeris, A., Bissonnette, C. J. & McGeer, P. L. Modulation of human microglia and THP-1 cell toxicity by cytokines endogenous to the nervous system. Neurobiol. Aging 26, 673–682 (2005).

    Article  CAS  Google Scholar 

  51. Klegeris, A. et al. Prolyl endopeptidase is revealed following SILAC analysis to be a novel mediator of human microglial and THP-1 cell neurotoxicity. Glia 56, 675–685 (2008).

    Article  Google Scholar 

  52. Walsh, K., Megyesi, J. & Hammond, R. Human central nervous system tissue culture: a historical review and examination of recent advances. Neurobiol. Dis. 18, 2–18 (2005).

    Article  CAS  Google Scholar 

  53. Konishi, Y., Lindholm, K., Yang, L. B., Li, R. & Shen, Y. Isolation of living neurons from human elderly brains using the immunomagnetic sorting DNA-linker system. Am. J. Pathol. 161, 1567–1576 (2002).

    Article  CAS  Google Scholar 

  54. Brewer, G. J. et al. Culture and regeneration of human neurons after brain surgery. J. Neurosci. Methods 107, 15–23 (2001).

    Article  CAS  Google Scholar 

  55. Verwer, R. W. et al. Cells in human postmortem brain tissue slices remain alive for several weeks in culture. Faseb J. 16, 54–60 (2002).

    Article  CAS  Google Scholar 

  56. Brewer, G. J. & Torricelli, J. R. Isolation and culture of adult neurons and neurospheres. Nature Protoc. 2, 1490–1498 (2007).

    Article  CAS  Google Scholar 

  57. Ayuso-Sacido, A., Roy, N. S., Schwartz, T. H., Greenfield, J. P. & Boockvar, J. A. Long-term expansion of adult human brain subventricular zone precursors. Neurosurgery 62, 223–229; discussion 229–231 (2008).

    Article  Google Scholar 

  58. Walton, N. M. et al. Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain. Development 133, 3671–3681 (2006).

    Article  CAS  Google Scholar 

  59. Moe, M. C. et al. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons. Brain 128, 2189–2199 (2005).

    Article  Google Scholar 

  60. Richardson, R. M., Holloway, K. L., Bullock, M. R., Broaddus, W. C. & Fillmore, H. L. Isolation of neuronal progenitor cells from the adult human neocortex. Acta Neurochir. (Wien) 148, 773–777 (2006).

    Article  CAS  Google Scholar 

  61. Curtis, M. A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl Acad. Sci. USA 100, 9023–9027 (2003).

    Article  CAS  Google Scholar 

  62. Curtis, M. A., Faull, R. L. & Eriksson, P. S. The effect of neurodegenerative diseases on the subventricular zone. Nature Rev. Neurosci. 8, 712–723 (2007).

    Article  CAS  Google Scholar 

  63. Pillai, R. et al. Human astrocytes can be induced to differentiate into cells with neuronal phenotype. Exp. Cell Res. 312, 2336–2346 (2006).

    Article  CAS  Google Scholar 

  64. Sharif, A. et al. Transforming growth factor alpha promotes sequential conversion of mature astrocytes into neural progenitors and stem cells. Oncogene 26, 2695–2706 (2007).

    Article  CAS  Google Scholar 

  65. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  66. Chen, F. G. et al. Clonal analysis of nestin(–) vimentin(+) multipotent fibroblasts isolated from human dermis. J. Cell Sci. 120, 2875–2883 (2007).

    Article  CAS  Google Scholar 

  67. Gingras, M., Champigny, M. F. & Berthod, F. Differentiation of human adult skin-derived neuronal precursors into mature neurons. J. Cell Physiol. 210, 498–506 (2007).

    Article  CAS  Google Scholar 

  68. Kruse, C. et al. Towards the development of a pragmatic technique for isolating and differentiating nestin-positive cells from human scalp skin into neuronal and glial cell populations: generating neurons from human skin? Exp. Dermatol. 15, 794–800 (2006).

    Article  Google Scholar 

  69. Dhar, S., Yoon, E. S., Kachgal, S. & Evans, G. R. Long-term maintenance of neuronally differentiated human adipose tissue-derived stem cells. Tissue Eng. 13, 2625–2632 (2007).

    Article  CAS  Google Scholar 

  70. Discher, D. E., Janmey, P. & Wang, Y. L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  CAS  Google Scholar 

  71. Edelman, D. B. & Keefer, E. W. A cultural renaissance: in vitro cell biology embraces three-dimensional context. Exp. Neurol. 192, 1–6 (2005).

    Article  Google Scholar 

  72. Roy, N. S., Chandler-Militello, D., Lu, G., Wang, S. & Goldman, S. A. Retrovirally mediated telomerase immortalization of neural progenitor cells. Nature Protoc. 2, 2815–2825 (2007).

    Article  CAS  Google Scholar 

  73. Ponomarev, E. D., Novikova, M., Maresz, K., Shriver, L. P. & Dittel, B. N. Development of a culture system that supports adult microglial cell proliferation and maintenance in the resting state. J. Immunol. Methods 300, 32–46 (2005).

    Article  CAS  Google Scholar 

  74. Pleasure, S. J., Page, C. & Lee, V. M. Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci. 12, 1802–1815 (1992).

    Article  CAS  Google Scholar 

  75. Gross, P. G., Kartalov, E. P., Scherer, A. & Weiner, L. P. Applications of microfluidics for neuronal studies. J. Neurol. Sci. 252, 135–143 (2007).

    Article  Google Scholar 

  76. Wang, Z., Kim, M. C., Marquez, M. & Thorsen, T. High-density microfluidic arrays for cell cytotoxicity analysis. Lab. Chip 7, 740–745 (2007).

    Article  CAS  Google Scholar 

  77. Raiteri, M. Functional pharmacology in human brain. Pharmacol. Rev. 58, 162–193 (2006).

    Article  CAS  Google Scholar 

  78. Whitebread, S., Hamon, J., Bojanic, D. & Urban, L. Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development. Drug Discov. Today 10, 1421–1433 (2005).

    Article  CAS  Google Scholar 

  79. Lee, S. M. et al. Minocycline inhibits apoptotic cell death via attenuation of TNF-α expression following iNOS/NO induction by lipopolysaccharide in neuron/glia co-cultures. J. Neurochem. 91, 568–578 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a programme grant from the Health Research Council of New Zealand, the National Research Centre for Growth and Development, the Lynette Sullivan Huntington's disease research fund, the Alzheimer's Disease Trust, and the Marsden Fund. I would like to thank my many collaborators, postdoctoral fellows, research technicians and graduate students for their advice and help over many years, and in particular my collaborator, colleague and friend R. Faull who first introduced me to the wonders of the human brain.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

amyotrophic lateral clerosis

Huntington's disease

Parkinson's disease

stroke

FURTHER INFORMATION

Australian Brain Bank Network

Discovery-1 and MetaMorph Image Analysis

Harvard Brain Tissue Resource Center

Queen Square Brain Bank for Neurological Disorders

The Neurological Foundation of New Zealand Human Brain Bank

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dragunow, M. The adult human brain in preclinical drug development. Nat Rev Drug Discov 7, 659–666 (2008). https://doi.org/10.1038/nrd2617

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2617

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing