Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Asymmetry on large scale: the roadmap to stereoselective processes

Key Points

  • Asymmetric processes have become increasingly popular in the synthesis of pharmaceutical compounds in recent years, for reasons including the growing prevalence of more complicated molecular architectures featuring one or several stereocentres in pharmaceutical compounds and the desire to reduce wastage resulting from the production of unwanted enantiomers.

  • When assessing whether an asymmetric process is appropriate in a given case, two questions are particularly important:

  • First, does the overall cost-of-goods requirement for the final product favour a stereoselective transformation in the synthetic sequence as opposed to a racemic one in which the separation of antipodes is achieved by other means (notably diastereomer resolution via crystallization)?

  • Second, what is the likelihood of succeeding in developing an efficient and reliable asymmetric step, both from a conceptual point of view (are there literature or patent precedents available or not) and within the given timeframe?

  • This article, after providing some historical perspective on the field, discusses such questions, and reviews progress in developing industrial scale asymmetric syntheses.

Abstract

In recent years there has been a movement in drug discovery and development away from chemical processes that produce racemic compounds towards those that produce stereochemically defined products. Asymmetric reactions are an attractive way to produce such products. Here, I discuss the factors that are important in deciding whether using an asymmetric reaction is the most appropriate approach for the large-scale synthesis of a stereochemically defined pharmaceutical compound, and highlight progress in the development of large-scale stereoselective processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification of the main types of asymmetric transformations and resolutions.
Figure 2: Examples of industrial asymmetric processes: part 1.
Figure 3: Examples of industrial asymmetric processes: part 2.
Figure 4: Examples of industrial asymmetric processes: part 3.
Figure 5: Examples of industrial asymmetric processes: part 4.
Figure 6: Examples of diastereomer resolution.
Figure 7: Asymmetric catalysis applied to the construction of carbon–carbon bonds.

Similar content being viewed by others

References

  1. Waldeck, B. Three-dimensional pharmacology, a subject ranging from ignorance to overstatements. Pharmacol. Toxicol. 93, 203–210 (2003).

    CAS  PubMed  Google Scholar 

  2. Patel, B. K. & Hutt, A. J. Stereoselectivity in drug action and disposition: an overview in Chirality in Drug Design and Development (eds. Reddy, I. K. & Mehvar, R.) 139–190 (Marcel Dekker, New York, 2004). References 1 and 2 discuss the intricacies of stereoisomerism, biological discrimination and pharmacological considerations in light of the broad literature on the subject.

    Google Scholar 

  3. Mislow, K. Stereochemical terminology and its discontents. Chirality 14, 126–134 (2002). A critical review that disseminates the nomenclature of stereochemistry and provides examples of formally incorrect usage of expressions as well as recommendations.

    CAS  PubMed  Google Scholar 

  4. Fischer, E. & Passmore, F. Über die Bildung der Phenylhydrazide. Ber. Dtsch. Chem. Ges. 22, 2728–2736 (1889).

    Google Scholar 

  5. Fischer, E. Über die optischen Isomeren des Traubenzuckers, der Gluconsäure und der Zuckersäure. Ber. Dtsch. Chem. Ges. 23, 2611–2624 (1890).

    Google Scholar 

  6. Nakamura, Y. Asymmetrische Synthese. III. Versuch zur Darstellung eines optisch-aktiven Amins durch die Reduktion des Ketoxims beim Vorhandensein von optisch-aktiver Säure. Bull. Chem. Soc. Jpn. 16, 367–370 (1941).

    CAS  Google Scholar 

  7. Akabori, S., Sakurai, S., Izumi, Y. & Fuji, Y. An asymmetric catalyst. Nature 178, 323–324 (1956). After the results reported in reference 6 it was found that palladium deposited on silk fibroin could be used to effect hydrogenation of C=C bonds with up to 66% ee.

    CAS  Google Scholar 

  8. Harada, T. & Izumi, Y. Improved modified Raney Nickel catalyst for enantioface-differentiating (asymmetric) hydrogenation of methyl acetoacetate. Chem. Lett. 1195–1196 (1978).

  9. Orito, Y., Imai, S., Niwa, S. & Nguyen, G. -H. Asymmetric hydrogenation of methyl benzoylformate using platinum-carbon catalyst modified with cinchonidine. Yuki Gosei Kagaku Kyokaishi [J. Synth. Org. Chem. Jpn.] 37, 173–174 (1979).

    CAS  Google Scholar 

  10. Osborn, J. A., Jardine, F. H., Young, J. F. & Wilkinson, G. The preparation and properties of tris(triphenylphosphine) halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J. Chem. Soc. A (12) 1711–1732 (1966).

  11. Nozaki, H., Moriuti, S., Takaya, H. & Noyori, R. Asymmetric induction in carbenoid reactions by means of a dissymmetric copper chelate. Tetrahedron Lett. 43, 5239–5244 (1966).

    Google Scholar 

  12. Horner, L., Siegel, H. & Büthe, H. Hydrogen transfer. XXII. Asymmetric catalytic hydrogenation with an optically active phosphinerhodium complex in homogenous solution. Angew. Chem. Int. Ed. Engl. 7, 942 (1968).

    CAS  Google Scholar 

  13. Knowles, W. S. & Sabacky, M. J. Catalytic asymmetric hydrogenation employing a soluble optically active rhodium complex. J. Chem. Soc. Chem. Commun. 1445–1446 (1968).

  14. Knowles, W. S., Sabacky, M. J. & Vineyard, B. D. Catalytic asymmetric hydrogenation. J. Chem. Soc., Chem. Commun. 10–11 (1972).

  15. Dang, T. -P. & Kagan, H. B. The asymmetric synthesis of hydratropic acid and amino-acids by homogeneous catalytic hydrogenation. J. Chem. Soc. Chem. Commun. 481 (1971).

  16. Kagan, H. B. & Dang, T. -P. Asymmetric catalytic reduction with transition metal complexes. A catalytic system of rhodium(I) with (−) -2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane, a new chiral diphosphine. J. Am. Chem. Soc. 94, 6429–6433 (1972).

    CAS  Google Scholar 

  17. Kagan, H. B., Langlois, N. & Dang, T. -P. Reduction asymetrique catalysee par des complexes de metaux de transition IV. Synthese d'amines chirales au moyen d'un complexe de rhodium et d'isopropylidene dihydroxy-2,3 bis(diphenylphosphino)-1,4-butane (diop). J. Organomet. Chem. 90, 353–365 (1975).

    CAS  Google Scholar 

  18. Seebach, D., Beck, A. K. & Heckel, A. TADDOLs, their derivatives, and TADDOL analogues: versatile chiral auxiliaries. Angew. Chem. Int. Ed. 40, 92–138 (2001).

    CAS  Google Scholar 

  19. Vineyard, B. D., Knowles, W. S., Sabacky, M. J., Bachman, G. L. & Weinkauff, O. J. Asymmetric hydrogenation. Rhodium chiral bis-phosphine catalyst. J. Am. Chem. Soc. 99, 5946–5952 (1977).

    CAS  Google Scholar 

  20. Knowles, W. S. Asymmetric hydrogenation. Acc. Chem. Res. 16, 106–112 (1983).

    CAS  Google Scholar 

  21. Blaser, H. U., Spindler, F. & Studer, M. Enantioselective catalysis in fine chemicals production. Appl. Catal. A. General 221, 119–143 (2001). This review provides an excellent entry into the field of industrial asymmetric catalysis and aims for comprehensive coverage of the subject.

    CAS  Google Scholar 

  22. Knowles, W. S. Asymmetric hydrogenations (Nobel Lecture). Angew. Chem. Int. Ed. 41, 1998–2007 (2002). The paper presents a fascinating story of the pioneering work that eventually led to the L -DOPA process.

    CAS  Google Scholar 

  23. Sharpless, K. B. Searching for new reactivity (Nobel Lecture). Angew. Chem. Int. Ed. 41, 2024–2032 (2002).

    CAS  Google Scholar 

  24. Noyori, R. Asymmetric catalysis: science and opportunities (Nobel Lecture). Angew. Chem. Int. Ed. 41, 2008–2022 (2002). The excellent reviews in references 23 and 24 span a very fruitful period in asymmetric synthesis and provide an excellent overview of major achievements made.

    CAS  Google Scholar 

  25. Katsuki, T. & Sharpless, K. B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 102, 5974–5976 (1980).

    CAS  Google Scholar 

  26. Miyashita, A. et al. Synthesis of 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP), an atropisomeric chiral bis(triaryl)phosphine, and its use in the rhodium(I)-catalyzed asymmetric hydrogenation of α-(acylamino)acrylic acids. J. Am. Chem. Soc. 102, 7932–7934 (1980).

    CAS  Google Scholar 

  27. Blaser, H. -U. Enantioselective catalysis in fine chemicals production. Chem. Commun. 293–296 (2003).

  28. Corey, E. J. The logic of chemical synthesis: multistep synthesis of complex carbogenic molecules (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 30, 455–465 (1991).

    Google Scholar 

  29. Corey, E. J. & Helal, C. J. Reduction of carbonyl compounds with chiral oxazaborolidine catalysts: A new paradigm for enantioselective catalysis and a powerful new synthetic method. Angew. Chem. Int. Ed. Engl. 37, 1986–2012 (1998). A fascinating account of the development history of an area that has impacted extensively on the art of synthetic methodology.

    CAS  PubMed  Google Scholar 

  30. Hirao, A., Itsuno, S., Nakahama, N. & Yamazaki, N. Asymmetric reduction of aromatic ketones with chiral alkoxy-amineborane complexes. J. Chem. Soc. Chem. Commun. 315–317 (1981).

  31. Itsuno, S. et al. Asymmetric reduction of aliphatic ketones with the reagent prepared from (S)-(–)-2-amino-3-methyl-1, 1-diphenylbutane-1-ol and borane. J. Org. Chem. 49, 555–557 (1984).

    CAS  Google Scholar 

  32. Jones, T. K. et al. An asymmetric synthesis of MK-0417. Observation on oxazaborolidine-catalyzed reductions. J. Org. Chem. 56, 763–769 (1991).

    CAS  Google Scholar 

  33. Holt, R. A. Microbial asymmetric reduction in the synthesis of a drug intermediate. Chim. Oggi/Chemistry Today 14, 17–20 (1996).

    CAS  Google Scholar 

  34. Blacker, A. J. & Holt, R. A. in Chirality in Industry. Vol II: Developments in the Manufacture and Applications of Optically Active Compounds. (eds. Collins, A. N., Sheldrake, G. N., Crosby, J.) 245–261 (Wiley, Chichester, 1997).

    Google Scholar 

  35. Blaser, H. -U. The chiral switch of (S)-metolachlor: a personal account of an industrial odyssey in asymmetric catalysis. Adv. Synth. Catal. 344, 17–31 (2002).

    CAS  Google Scholar 

  36. Blaser, H. -U. et al. in Asymmetric Catalysis on Industrial Scale. Challenges, Approaches and Solutions. (eds Blaser, H.-U. & Schmidt, E.) 55–70 (Wiley-VCH, Weinheim, 2004). Provides an instructive insider view of the hardships and challenges faced when setting out to develop a process of this unique caliber.

    Google Scholar 

  37. Burk, M. J. et al. Me-DuPHOS-Rh-Catalyzed asymmetric synthesis of the pivotal glutarate intermediate for candoxatril. J. Org. Chem. 64, 3290–3298 (1999).

    CAS  PubMed  Google Scholar 

  38. Burk, M. J. Modular phospholane ligands in asymmetric catalysis. Acc. Chem. Res. 33, 363–372 (2000).

    CAS  PubMed  Google Scholar 

  39. Katsuki, T. Some recent advances in metallosalen chemistry. Synlett 281–297 (2003).

  40. Rouhi, A. M. Chiral business. Chem. Eng. News 81, 45–55 (2003).

    Google Scholar 

  41. Rouhi, A. M. Chirality at work. Chem. Eng. News 81, 56–61 (2003).

    Google Scholar 

  42. Rouhi, A. M. Chiral chemistry. Chem. Eng. News 82, 47–62 (2004).

    Google Scholar 

  43. O'Brien, M. K. & Vanasse, B. Asymmetric processes in the large-scale preparation of chiral drug candidates. Curr. Opin. Drug Discov. Dev. 3, 793–806 (2000).

    CAS  Google Scholar 

  44. Hillier, M. C. & Reider, P. J. Stereoselective synthesis from a process research perspective. Drug Discov. Today 7, 303–314 (2002).

    PubMed  Google Scholar 

  45. Federsel, H. -J. Facing chirality in the 21st century: approaching the challenges in the pharmaceutical industry. Chirality 15, S128–S142 (2003).

    CAS  PubMed  Google Scholar 

  46. Federsel, H. -J. Searching for scalable processes: addressing the challenges in times of increasing complexity. Curr. Opin. Drug Discov. Dev. 6, 838–847 (2003).

    CAS  Google Scholar 

  47. Breuer, M. et al. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed. 43, 788–824 (2004).

    CAS  Google Scholar 

  48. Hawkins, J. M. & Watson, T. J. N. Asymmetric catalysis in the pharmaceutical industry. Angew. Chem. Int. Ed. 43, 3224–3228 (2004). A paper describing the pros and cons of asymmetric catalysis, illustrated by authentic examples.

    CAS  Google Scholar 

  49. Asymmetric Catalysis on Industrial Scale. Challenges, Approaches and Solutions (eds. Blaser, H. U. & Schmidt, E.) (Wiley-VCH, Weinheim, 2004). This book provides an outstanding and up-to-date overview of the current state-of-the-art covering both chemo- and biocatalytic processes that are in industrial operation.

  50. Belluš, D. & Ramos Tombo, G. Chirality and crop protection. Angew. Chem. Int. Ed. Engl. 30, 1193–1215 (1991).

    Google Scholar 

  51. Williams, A. Opportunities for chiral agrochemicals. Pestic. Sci. 46, 3–9 (1996).

    CAS  Google Scholar 

  52. Pauluth, D. & Wächtler, A. E. F. in Chirality in Industry. Vol. II: Developments in the Manufacture and Applications of Optically Active Compounds. (eds Collins, A. N., Sheldrake, G. N., Crosby, J.) 263–286 (Wiley, Chichester, 1997).

    Google Scholar 

  53. Chirality in Liquid Crystals. (eds. Kitzerow, H.-S. & Bahr, C.) (Springer, New York, 2001).

  54. Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 1: synthetic strategy and preparation of a common precursor. Org. Process Res. Dev. 8, 92–100 (2004).

    CAS  Google Scholar 

  55. Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 2: synthesis of fragments C1–6 and C9–14 . Org. Process Res. Dev. 8, 101–106 (2004).

    CAS  Google Scholar 

  56. Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 3: Synthesis of fragment C15–21 . Org. Process Res. Dev. 8, 107–112 (2004).

    CAS  Google Scholar 

  57. Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 4: preparation of fragment C7–24 . Org. Process Res. Dev. 8, 113–121 (2004).

    CAS  Google Scholar 

  58. Mickel, S. J. et al. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 5: linkage of fragments C1–6 and C7–24 and finale. Org. Process Res. Dev. 8, 122–130 (2004).

    CAS  Google Scholar 

  59. Loiseleur, O. et al. A practical building block for the synthesis of Discodermolide. Org. Proc. Res. Dev. 8, 597–602 (2004).

    CAS  Google Scholar 

  60. Koehn, F. E. & Carter, G. T. The evolving role of natural products in drug discovery. Nature Rev. Drug Discov. 4, 206–220 (2005).

    CAS  Google Scholar 

  61. Salomon, A. R. et al. Apoptolidin, a selective cytotoxic agent, is an inhibitor of F0F1-ATPase. Chem. Biol. 8, 71–80 (2001).

    CAS  PubMed  Google Scholar 

  62. Wender, P. A. et al. Facile synthetic access to and biological evaluation of the macrocyclic core of apoptolidin. Org. Lett. 5, 2299–2302 (2003).

    CAS  PubMed  Google Scholar 

  63. Nicolaou, K. C. et al. Total synthesis of apoptolidin: construction of enantiomerically pure fragments. J. Am. Chem. Soc. 125, 15433–15442 (2003).

    CAS  PubMed  Google Scholar 

  64. Nicolaou, K. C. et al. Total synthesis of apoptolidin: completion of the synthesis and analogue synthesis and evaluation. J. Am. Chem. Soc. 125, 15443–15454 (2003). References 62–64 provide academic approaches to the complicated task of synthesizing apoptolidin.

    CAS  PubMed  Google Scholar 

  65. Pfaltz, A. Recent developments in asymmetric catalysis. Chimia 55, 708–714 (2001).

    CAS  Google Scholar 

  66. Enantioselective Catalysis. (ed. Bolm, C.) Chem. Rev. 103, 2761–3400 (2003).

  67. Asymmetric catalysis. Special feature. (eds Halpern, J. & Trost, B. M.) Proc. Natl. Acad. Sci. USA 101 (2004).

  68. Tietze, L. F., Hiriyakkanavar, I. & Bell, H. P. Enantioselective palladium-catalyzed transformations. Chem. Rev. 104, 3453–3516 (2004).

    CAS  PubMed  Google Scholar 

  69. Asymmetric organocatalysis. (eds Houk, K. N. & List, B.) Acc. Chem. Res. 37, 487–631 (2004).

  70. Ward, R. S. Dynamic kinetic resolution. Tetrahedron Asymmetry 6, 1475–1490 (1995).

    CAS  Google Scholar 

  71. Stecher, H. & Faber, K. Biocatalytic deracemization techniques: dynamic resolutions and stereoinversions. Synthesis 1, 1–16 (1997).

    Google Scholar 

  72. Keith, J. M., Larrow, J. F. & Jacobsen, E. N. Practical considerations in kinetic resolution reactions. Adv. Synth. Catal. 343, 5–26 (2001).

    CAS  Google Scholar 

  73. Schaus, S. E. et al. Highly selective hydrolytic kinetic resolution of terminal epoxides catalyzed by chiral (salen)CoIII complexes. Practical synthesis of enantioenriched terminal epoxides and 1, 2-diols. J. Am. Chem. Soc. 124, 1307–1315 (2002).

    CAS  PubMed  Google Scholar 

  74. Nielsen, L. P. C. et al. Mechanistic investigation leads to a synthetic improvement in the hydrolytic kinetic resolution of terminal epoxides. J. Am. Chem. Soc. 126, 1360–1362 (2004).

    CAS  PubMed  Google Scholar 

  75. Dartt, C. B. & Davis, M. E. Catalysis for environmentally benign processing. Ind. Eng. Chem. Res. 33, 2887–2899 (1994). An in-depth discussion on the advantages with production under catalytic conditions in general, but also including operation in asymmetric mode.

    CAS  Google Scholar 

  76. Sheldon, R. A. Catalysis: The key to waste minimization. J. Chem. Tech. Biotechnol. 68, 381–388 (1997).

    CAS  Google Scholar 

  77. Sheldon, R. A. Atom utilization, E factors and the catalytic solution. C. R. Acad. Sci. Paris, Série IIc, Chimie/Chemistry 3, 541–551 (2000).

    CAS  Google Scholar 

  78. Federsel, H. -J., Jaksch, P. & Sandberg, R. An efficient synthesis of a new, chiral 2', 6'-pipecoloxylidide local anaesthetic agent. Acta Chem. Scand. Ser. B 41, 757–761 (1987).

    Google Scholar 

  79. Harrington, P. J. & Lodewijk, E. Twenty years of naproxen technology. Org. Process Res. Dev. 1, 72–76 (1997).

    CAS  Google Scholar 

  80. Brown, H. C. & Zweifel, G. Hydroboration as a convenient procedure for the asymmetric synthesis of alcohols of high optical purity. J. Am. Chem. Soc. 83, 486–487 (1961).

    Google Scholar 

  81. Partridge, J. J. & Bray, B. L. in Process Chemistry in the Pharmaceutical Industry. (ed. Gadamasetti, K. G.) 301–325 (Marcel Dekker, New York, 1999).

    Google Scholar 

  82. Rosen, T. C. & Dauβmann, T. Biocatalytic vs. chemical catalyst for asymmetric reduction. Chim. Oggi/Chemistry Today [Suppl. on Chiral catalysis], 43–45 (2004).

  83. Wandrey, C., Liese, A., Kihumbu, D. Industrial biocatalysis: past, present, and future. Org. Process Res. Dev. 4, 286–290 (2000).

    CAS  Google Scholar 

  84. Liese, A., Seelback, K. & Wandrey, C. Industrial Biotransformations. (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  85. Thommen, M. & Blaser, H. -U. Industrial application of enantioselective hydrogenation: Where do you get the chiral catalyst? Chim. Oggi/Chemistry Today 21, 27–31 (2003).

    CAS  Google Scholar 

  86. Thommen, M. & Blaser, H. -U. Sourcing chiral ligands – Issues and solutions. Chim. Oggi/Chemistry Today 21, 6–8 (2003).

    CAS  Google Scholar 

  87. Thommen, M. & Blaser, H. -U. Solvias ligands: the 'Lego approach' to industrial success. Chim. Oggi/Chemistry Today [Suppl. on Chiral catalysis] 6–8 (2004).

  88. Zhang, X. Developing a practical chiral toolbox for catalytic asymmetric hydrogenation. Chim. Oggi/Chemistry Today [Suppl. on Chiral catalysis] 10–17 (2004).

  89. Van den Berg, M. et al. Instant ligand libraries of monodentate posphoramidites. Asymmetric hydrogenation made easy. Chim. Oggi/Chemistry Today [Suppl. on Chiral catalysis] 18–21 (2004).

  90. Lennon, I. C. & Moran, P. H. Rapid screening of asymmetric hydrogenation catalysts leading to commercial applications. Chim. Oggi/Chemistry Today [Suppl. on Chiral catalysis] 34–37 (2004).

  91. Blaser, H. -U. et al. Solvias Josiphos ligands: from discovery to technical applications. Top. Catal. 19, 3–16 (2002). A paper that gives a detailed description of the development of a versatile class of catalysts with broad scope.

    CAS  Google Scholar 

  92. Burello, E. & Rothenberg, G. Optimal Heck cross-coupling catalysis: A pseudo-pharmaceutical approach. Adv. Synth. Catal. 345, 1334–1340 (2003).

    CAS  Google Scholar 

  93. Blaser, H. -U. Enantioselective hydrogenation comes of age. Chim. Oggi/Chemistry Today [Suppl. on Chiral catalysis] 4–5 (2004).

  94. Trost, B. M. Asymmetric catalysis: An enabling science. Proc. Natl. Acad. Sci. USA 101, 5348–5355 (2004).

    CAS  PubMed  Google Scholar 

  95. Cotton, H. et al. Asymmetric synthesis of esomeprazole. Tetrahedron: Asymmetry 11, 3819–3825 (2000).

    CAS  Google Scholar 

  96. Federsel, H. -J. Logistics of process R&D: transforming laboratory methods to manufacturing scale. Nature Rev. Drug Discov. 2, 654–664 (2003).

    CAS  Google Scholar 

  97. Federsel, H. -J. & Larsson, M. in Asymmetric Catalysis on Industrial Scale. Challenges, Approaches and Solutions (eds. Blaser, H. U. & Schmidt, E.) 413–436 (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  98. Rudolph, J., Hermanns, N. & Bolm, C. The MPEG effect: Improving asymmetric processes by simple additives. J. Org. Chem. 69, 3997–4000 (2004).

    CAS  PubMed  Google Scholar 

  99. Mickel, S. J., Daeffler, R. & Prikoszovich, W. A study of the Paterson boron aldol reaction as used in the large-scale total synthesis of the anticancer marine natural product (+)-discodermolide. Org. Process Res. Dev. 9, 113–120 (2005).

    CAS  Google Scholar 

  100. Evans, D. A., Nelson, J. V. & Taber, T. Stereoselective aldol condensations. Top. Stereochem. 13, 1–115 (1982).

    CAS  Google Scholar 

  101. Davies, H. M. L. & Yang, J. Influence of a β-alkoxy substituent on the C-H activation chemistry of alkyl ethers. Adv. Synth. Catal. 345, 1133–1138 (2003).

    CAS  Google Scholar 

  102. Desai, L. V., Hull, K. L. & Sanford, M. S. Palladium-catalyzed oxygenation of unactivated sp3 C-H bonds. J. Am. Chem. Soc. 126, 9542–9543 (2004).

    CAS  PubMed  Google Scholar 

  103. Green, M. T., Dawson, J. H. & Gray, H. B. Oxoiron(IV) in chloroperoxidase compound II is basic: Implications for P450 chemistry. Science 304, 1653–1656 (2004).

    CAS  PubMed  Google Scholar 

  104. Reetz, M. T. et al. A new principle in combinatorial asymmetric transition-metal catalysis: mixtures of chiral monodentate P ligands. Angew. Chem. Int. Ed. 42, 790–792 (2003).

    CAS  Google Scholar 

  105. Dalko, P. I. & Moisan, L. Enantioselective organocatalysis. Angew. Chem. Int. Ed. 40, 3726–3748 (2001).

    CAS  Google Scholar 

  106. Sakthivel, K. et al. Amino acid catalyzed direct asymmetric aldol reactions: A bioorganic approach to catalytic asymmetric carbon–carbon bond-forming reactions. J. Am. Chem. Soc. 123, 5260–5267 (2001).

    CAS  PubMed  Google Scholar 

  107. Hartikka, A. & Arvidsson, P. I. Rational design of asymmetric organocatalysts — increased reactivity and solvent scope with a tetrazolic acid. Tetrahedron: Asymmetry 15, 1831–1834 (2004).

    CAS  Google Scholar 

  108. Notz, W., Tanaka, F. & Barbas, III, C. F. Enamine-based organocatalysis with proline and diamines: The development of direct catalytic asymmetric aldol, Mannich, Michael, and Diels–Alder reactions. Acc. Chem. Res. 37, 580–591 (2004).

    CAS  PubMed  Google Scholar 

  109. Dalko, P. I. & Moisan, L. In the Golden Age of organocatalysis. Angew. Chem. Int. Ed. 43, 5138–5175 (2004).

    CAS  Google Scholar 

  110. Bhunnoo, R. A. et al. An asymmetric phase-transfer dihydroxylation reaction. Angew. Chem. Int. Ed. 41, 3479–3480 (2002).

    CAS  Google Scholar 

  111. Jew, S. -S. et al. Highly enantioselecvtive phase-transfer-catalytic alkylation of 2-phenyl-2-oxazoline-4-carboxylic acid tert-butyl ester for the asymmetric synthesis of α-alkyl serines. Angew. Chem. Int. Ed. 43, 2382–2385 (2004).

    CAS  Google Scholar 

  112. Shirakawa, S., Tanaka, Y. & Maruoka, K. Development of a recyclable fluorous chiral phase-transfer catalyst: application to the catalytic asymmetric synthesis of α-amino acids. Org. Lett. 6, 1429–1431 (2004).

    CAS  PubMed  Google Scholar 

  113. Kim, M. -J. et al. Lipase/ruthenium-catalyzed dynamic kinetic resolution of hydroxy acids, diols, and hydroxy aldehydes protected with a bulky group. J. Org. Chem. 66, 4736–4738 (2001).

    CAS  PubMed  Google Scholar 

  114. Huerta, F. F., Minidis, A. B. E. & Bäckvall, J. E. Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem. Soc. Rev. 30, 321–331 (2001). A fascinating approach is presented in references 113 and 114 that combines the 'best of two worlds'.

    CAS  Google Scholar 

  115. Dakternieks, D. et al. Remarkable Lewis acid mediated enhancement of enantioselectivity during free-radical reductions by simple chiral non-racemic stannanes. Chem. Commun. 1665–1666 (1999).

  116. Sibi, M. P. & Rheault, T. R. Enantioselective radical reactions. In Radicals in Organic Synthesis. Volume 1: Basic Principles. (eds. Renaud, P. & Sibi, M. P.) pp. 461–478 (Wiley-VCH, Weinheim, 2001).

    Google Scholar 

  117. Winston Churchill (1874–1965), British Prime Minister. Speech given at the Lord Mayor's Luncheon, Mansion House, London, Nov 10 (1942).

  118. Enders, D. Forming asymmetric C–C bonds. CHEMTECH 11, 504–513 (1981).

    CAS  Google Scholar 

  119. Halpern, J. Mechanism and stereoselectivity of asymmetric hydrogenation. Science 217, 401–407 (1982). This seminal paper provides an insightful analysis and discussion on mechanistic details of rhodium-catalysed enamide reductions.

    CAS  PubMed  Google Scholar 

  120. Yoon, T. P. & Jacobsen, E. N. Privileged chiral catalysts. Science 299, 1691–1693 (2003).

    CAS  PubMed  Google Scholar 

  121. Tang, W. & Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 103, 3029–3069 (2003).

    CAS  PubMed  Google Scholar 

  122. Diéguez, M., Pàmies, O. & Claver, C. Ligands derived from carbohydrates for asymmetric catalysis. Chem. Rev. 104, 3189–3215 (2004). References 121 and 122 represent excellent accounts of the diverse field of various ligand families.

    PubMed  Google Scholar 

  123. Garrett, C. E. & Prasad, K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv. Synth. Catal. 346, 889–900 (2004). This review provides a discussion on the state-of-the-art with emphasis on methods for work-up of process streams from homogeneous reactions.

    CAS  Google Scholar 

  124. Le Ret, C. & Briel, O. Cost effective management of industrial asymmetric hydrogenation reactions. Chim. Oggi/Chemistry Today 29–32 (2004).

  125. Fan, Q. -H., Li, Y. -M. & Chan, A. S. C. Recoverable catalysts for asymmetric organic synthesis. Chem. Rev. 102, 3385–3466 (2002).

    CAS  PubMed  Google Scholar 

  126. Recoverable catalysts and reagents. (ed. Gladysz, J. A.). Chem. Rev. 102, 3215–3892 (2002). Readers with a wider interest in the area of supported catalysts are referred to the entire issue of the journal, where the topic is treated from a range of angles.

  127. Yang, X. -W. et al. A highly efficient and practical new PEG-bound bi-cinchona alkaloid ligand for the catalytic asymmetric aminohydroxylation of alkenes. Tetrahedron: Asymmetry 15, 1915–1918 (2004).

    CAS  Google Scholar 

  128. Reed, N. N., Dickerson, T. J., Boldt, G. E. & Janda, K. D. Enantioreversal in the Sharpless asymmetric epoxidation reaction controlled by the molecular weight of a covalently appended achiral polymer. J. Org. Chem. 70, 1728–1731 (2005).

    CAS  PubMed  Google Scholar 

  129. Yet, L. Recent development in catalytic asymmetric Strecker-type reactions. Angew. Chem. Int. Ed. 40, 875–877 (2001).

    CAS  Google Scholar 

  130. Yuan, Y. et al. Highly enantioselective Friedel–Crafts reaction of aromatic amines with ethyl glyoxalate catalyzed by chiral titanium(IV) complexes: practical synthesis of aminomandelic acid derivatives. J. Org. Chem. 69, 146–149 (2004).

    CAS  PubMed  Google Scholar 

  131. Chirality in Industry. Vol I: The Commercial Manufacture and Applications of Optically Active Compounds; Vol II: Developments in the Manufacture and Applications of Optically Active Compounds. (eds Collins, A. N., Sheldrake, G. N. & Crosby, J.) (Wiley, Chichester, 1992/1997).

  132. Sheldon, R. A. Chirotechnlogy. Industrial Synthesis of Optically Active Compounds. 271–385 (Marcel Dekker, New York, 1993).

    Google Scholar 

  133. Process Chemistry in the Pharmaceutical Industry. (ed. Gadamasetti, K. G.) 301–368 (Marcel Dekker, New York, 1999). These books treat process design, development, and large-scale manufacture in a broad sense, and include distinct chapters on asymmetric methodologies.

  134. Comprehensive Asymmetric Catalysis; Vols. I–III. (eds. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H) (Springer, Heidelberg, 1999).

  135. Catalytic Asymmetric Synthesis 2nd Edn (ed. Ojima, I.) (Wiley-VCH, Chichester, 2000).

  136. Applied Homogenic Catalysis with Organic Compounds; Vols. I–III. (eds. Cornils, B. & Herrmann, W. A.) (Wiley-VCH, Weinheim, 2002).

  137. Chiral Reagents for Asymmetric Synthesis Vol 5. (ed. Paquette, L. A.) (Wiley-VCH, New York, 2003).

  138. Catalysis from A to Z — A Concise Encyclopedia 2nd Edn (eds Cornils, B., Herrmann, W. A., Schlögl, R. & Wong, C.-H.) (Wiley-VCH, Weinheim, 2003).

  139. Bommarius, A. S. & Riebel, B. R. Biocatalysis. Fundamentals and Applications. (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  140. Methodologies in Asymmetric Catalysis. (ed. Malhotra, S. V.) (American Chemical Society, Washington DC, 2004).

  141. Progress in Biological Chirality. (eds Pályi, C., Zucchi, C. & Caglioti, L.) (Elsevier, Amsterdam, 2004).

  142. Andraos, J. Utilization of reaction metrics for green chemistry: Application to reaction analysis. Org. Process Res. Dev. 9, 149–163 (2005).

    CAS  Google Scholar 

  143. Paterson, I. et al. A second-generation total synthesis of (+)-discodermolide: The development of a practical route using solely substrate-based stereocontrol. J. Org. Chem. 70, 150–160 (2005).

    CAS  PubMed  Google Scholar 

  144. Blaser, H. U., Pugin, B. & Spindler, F. Progress in enantioselective catalysis assessed from an industrial point of view. J. Mol. Catal. A: Chemical 231, 1–20 (2005).

    CAS  Google Scholar 

  145. Ramos Tombo, G. M. & Blaser, H. U. Chirality in agrochemistry: An established technology and its impact on the development of industrial stereoselective catalysis. In Pesticide Chemistry and Bioscience (eds Brooks, G. T. & Roberts, T. R.) 33–54 (Royal Society of Chemistry, Cambridge, 1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

OMIM

Alzheimer's disease

Parkinson's disease

Glossary

HETEROGENEOUS CATALYST

When the catalyst is applied in an aggregation form different to that of the reaction medium, the system is heterogeneous. For the vast majority of cases, the former is solid whereas the latter can be either liquid or gaseous.

HOMOGENEOUS SYSTEMS

In a homogeneous system, all participating species (catalyst, reagent and substrate) are in the same aggregation form, which most frequently means in a state of dissolution in a suitable solvent.

RESOLVING AGENT

An enantiomerically pure auxiliary molecule of defined stereochemistry that is used to form a precipitating salt with preferably one of the enantiomers in a racemate. From the precipitate, the desired antipode can be isolated and the auxiliary recycled.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Federsel, HJ. Asymmetry on large scale: the roadmap to stereoselective processes. Nat Rev Drug Discov 4, 685–697 (2005). https://doi.org/10.1038/nrd1798

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1798

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing