Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Embryonic stem cells in drug discovery

Key Points

  • In the highly competitive industry of drug discovery, pharmaceutical and biotechnology companies must rely on improved high throughput technologies to advance programs from target confidence to pre-clinical evaluation.

  • Embryonic stem cells have recently become highly visible with the identification of pluripotent cell lines derived from human blastocysts or primordial germ cells. Much of the focus of these cells has centered on future opportunities in regenerative medicine, with less emphasis on the near term opportunities in cell-based systems across the drug discovery timeline.

  • Mouse embryonic stem cells have been used extensively over the last 10-15 years by drug discoverers in the development of genetically modified mice for target validation, target selectivity, model development and toxicity evaluation.

  • Advances in the isolation and purification of in vitro differentiated murine ES cells combined with highly sophisticated methods of genetic engineering have afforded opportunities in drug discovery directly in murine ES cells. The strength of an ES cell in vitro approach is time to delivery of results, cost an

Abstract

The completed sequencing of the human genome has identified numerous potential drug targets, which are expected to deliver the next generation of new medicines. However, for drug companies to realize this opportunity, they must rely on improved prognostic applications of high-throughput technologies, from target identification to preclinical compound evaluation. Reducing the timelines and attrition rate of new therapeutics for clinical evaluation requires cell-based methods for testing the efficacy and safety of new compounds. Drug discoverers are beginning to use stem cells as a new resource for increasing confidence in the mechanism of action of new targets and the safety of modulating their activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Applications of stem-cell technology in drug discovery.
Figure 2: ES cell differentiation potential.
Figure 3: Strategies to derive purified populations of in vitro differentiated ES cells.
Figure 4: Growth and delivery of ES cells and derivatives for use in drug discovery applications.

Similar content being viewed by others

References

  1. Harris, S. Transgenic knockouts as part of high-throughput, evidence based target selection and validation strategies. Drug Discov. Today 6, 628–636 (2001)

    Article  CAS  PubMed  Google Scholar 

  2. Abuin, A., Holt, K. H., Platt, K. A., Sands, A. T. & Zambrowicz, B. P. Full-speed mammalian genetics; in vivo target validation in the drug discovery process. Trends Biotechnol. 20, 261–268 (2002). References 1 and 2 are excellent reviews on the application of genetically modified mice in drug discovery.

    Article  Google Scholar 

  3. Crawley, J. N. Behavioral phenotyping of transgenic and knockout mice: experimental design and evaluation of general health, sensory functions, motor abilities and specific behavioral tests. Brain Res. 835, 18–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. van der Staay, F. J. & Steckler, T. Behavioral phenotyping of mouse mutants. Behav. Brain Res. 125, 3–12 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Doevendans, P. A., Daemen, M. J., de Muinck, E. D. & Smits, J. F. Cardiovascular phenotyping in mice. Cardiovasc. Res. 39, 34–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nature Rev. Cancer 2, 11–18 (2002).

    Article  CAS  Google Scholar 

  7. Massoud, T. F. & Gambhir, S. S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Zambrowicz, B. P. & Sands, A. T. Knockouts of the 100 best-selling drugs — will they model the next 100? Nature Rev. Drug Discov. 2, 38–51 (2003). An important review aligning genetically modified mice with therapeutic target evaluation. The authors describe the phenotypes associated with KO mice for targets of many of the most successful medicines and conclude that this is a cost-effective strategy for defining novel target mechanisms for the next generation of medicines.

    Article  CAS  Google Scholar 

  9. Zhang, S. H., Reddick, R. L., Piedrahita, J. A. & Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Plump, A. S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Beierschmitt, W. P. et al. Induction of hepatic microsomal drug-metabolizing enzymes by inhibitors of 5-lipoxygenase (5-LO) studies in rats and 5-LO knockout mice. Toxicol. Sci. 63, 15–21 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Davis, J. A. et al. An Alzheimer's disease-linked PS1 variant rescues the developmental abnormalities of PS1-deficient embryos. Neuron 20, 603–609 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Grilli, M. et al. Presenilin-1 regulates the neuronal threshold to excitotoxicity both physiologically and pathologically. Proc. Natl Acad. Sci. USA 97, 12822–12827 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, Y., Schnegelsberg, P. N., Dausman, J. & Jaenisch, R. Functional redundancy of the muscle-specific transcription factor Myf5 and myogenin. Nature 379, 823–825 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Prosser, H. M. et al. Targeted replacement of rodent CCR2 with the human orthologue CCR2B: a mouse model for in vivo analysis of human target-selective small molecule MCP-1 receptor antagonists. Drug Discov. Res. 55, 197–209 (2002).

    CAS  Google Scholar 

  16. Shiao, L. L., Cascieri, M. A., Trumbauer, M., Chen, H. & Sullivan, K. A. Generation of mice expressing the human glucagons receptor with a direct replacement vector. Transgenic Res. 8, 295–302 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Zambrowicz, B. P. et al. Wnk1 kinase deficiency lowers blood pressure in mice: A gene-trap screen to identify potential targets for therapeutic intervention. Proc. Natl Acad. Sci. USA 10 November 2003 (doi:10.1073pnas.2336103100).

  18. Vivian, J. L., Chen, Y., Yee, D., Schneider, E. & Magnuson, T. An allelic series of mutations in Smad2 and Smad4 identified in genotype-based screen of N-ethyl-N-nitrosourea-mutagenized mouse embryonic stem cells. Proc. Natl Acad. Sci. USA 99, 15542–15547 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of a visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985). The first report of in vitro differentiation in murine embryonic stem cells. The authors describe the spontaneous differentiation potential of the ES cells and offer a forward-looking perspective of this observation.

    CAS  PubMed  Google Scholar 

  20. Williams, R. L. et al. Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, 684–687 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Wobus, A. M., Grosse, R. & Schoneich, J. Specific effects of nerve growth factor on the differentiation pattern of mouse embryonic stem cells in vitro. Biomed. Biocem. Acta. 47, 965–973 (1988).

    CAS  Google Scholar 

  22. Robbins, J., Gulick, J., Sanchez, A., Howles, P. & Doetschman, T. Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J. Biol. Chem. 265, 11905–11909 (1990).

    CAS  PubMed  Google Scholar 

  23. Maltsev, V. A., Rohwedel, J., Herscheler, J. & Wobus A. M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusoidal, atrial and ventricular cell types. Mech. Dev. 44, 41–50 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Schmitt, R. M., Bruyns, E. & Snodgrass, H. R. Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. Genes Dev. 5, 728–740 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Wiles, M. V. & Keller, G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111, 259–267 (1991).

    CAS  PubMed  Google Scholar 

  26. Chen, U. Differentiation of mouse embryonic stem cells into lympho-hematopoietic lineages in vitro. Dev. Immunol. 2, 29–50 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Keller, G., Kennedy, M., Papayannopoulou, T. & Wiles, M. V. Hematopoeitic commitment during embryonic stem cell differentiation in culture. Mol. Cell. Biol. 13, 473–486 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Strubing, C. et al. Differentiation of pluripotent embryonic stem cells into neuronal lineages in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Fraichard, A. et al. In vitro differentiation of embryonic stem cells into glial and functional neurons. J. Cell Sci. 108, 3181–3188 (1995).

    CAS  PubMed  Google Scholar 

  30. Desbaillets, I., Ziegler, U., Groscurth, P. & Gasserman, M. Embryoid body: an in vitro model of mouse embryogenesis. Exp. Physiol. 85, 645–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Dani, C. et al. Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell Sci. 110, 1279–1285 (1997).

    CAS  PubMed  Google Scholar 

  32. Kramer, J., Hegeret, C., Guan, K., Wobus, A. M., Muller, P. K. & Rohedel, J. Embryonic stem cell-derived chondrogenic differentiation in vitro: activation by BMP-2 and BMP-4. Mech. Dev. 92, 193–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Hegert, C. et al. Differentiation plasticity of chondrocytes derived from mouse embryonic stem cells. J. Cell Sci. 115, 4617–4628 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Boheler, K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V. & Wobus, A. M. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91, 189–201. (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Angelov, D. N. et al. Temporospatial relationships between macroglia and microglia during in vitro differentiation of murine stem cells. Dev. Neurosci. 20, 42–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Brustle, O. et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Lumelsky, N. et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Yamane, T. et al. Development of osteoclasts from embryonic stem cells through a pathway that is c-fms but not c-kit dependent. Blood 90, 3516–3523 (1997).

    CAS  PubMed  Google Scholar 

  40. Berthier, R. et al. The MS-5 murine stromal cell line and hematopoietic growth factor synergize to support the megakaryocyte differentiation of embryonic stem cells. Exp. Hematol. 25, 481–490 (1997).

    CAS  PubMed  Google Scholar 

  41. Stevens, L. C. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation embryos. Dev. Biol. 21, 364–382 (1970).

    Article  CAS  PubMed  Google Scholar 

  42. Damjanov, I., Damjanov, J. & Solter, D. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed Robertson, E. J.) 1–18 (IRL Oxford, Washington, 1987).

    Google Scholar 

  43. Klug, M. G., Soonpaa, M. H., Koh, G. Y. & Fields, L. J. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–224 (1996). References 41–43 clearly establish lineage selection as an important method in the derivation and purification of some in vitro differentiated ES cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mountford, P. et al. Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc. Natl Acad. Sci. USA 91, 4303–4307 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, M., Pevny, L., Lovell-Badge, R. & Smith, A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Kolossov, E. et al. Functional characteristics of ES cell-derived cardiac precursor cells identified by tissue-specific expression of green fluorescent protein. J. Cell Biol. 143, 2045–2056 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Allen, M. et al. Deficiency of the stress kinase p38α results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J. Exp. Med. 191, 859–870 (2000). This paper describes how murine ES cell in vitro differentiation was used to overcome the embryonic lethality of the target gene KO mouse and detail the role of the p38 kinase in inflammatory signalling. The results were important to drug discovery investigators and the potential impact of in vitro -based stem-cell technology was highlighted.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, J. -H. et al. Dopaminergic neurons derived embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, M. A. et al. Overexpression of midbrain-specific transcription factor Nurr1 modifies susceptibility of mouse neural stem cells to neurotoxins. Neurosci. Lett. 333, 74–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Blyszczuk, P. et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin positive progenitor and insulin-producing cells. Proc. Natl Acad. Sci. USA 100, 998–1003 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bagutti, C., Wobus, A. M., Fassler, R. & Watt, F. M. Differentiation of embryonic stem cells into keratinocytes: comparisons of wild-type and β1-integrin deficient cells. Dev. Biol, 179, 184–196 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Fairchild, P. J. et al. Directed differentiation of dendritic cells from mouse embryonic stem cells. Curr. Biol. 10, 1515–1518 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Nakano, T., Kodama, H. & Honjo, T. In vitro development of primitive and definitive erythryocytes from different precursors. Science 272, 722–724 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Risau, W. et al. Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102, 471–478 (1988).

    CAS  PubMed  Google Scholar 

  55. Rohwedel, J. et al. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol 164, 87–101 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Buttery, L. D. et al. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. J. Cell Sci. 110, 1279–1285 (1997).

    Google Scholar 

  57. Jones, E. A., Tosh, D., Wilson, D. I., Lindsay, S. & Forrester, L. M. Hepatic differentiation of murine embryonic stem cells. Exp. Cell Res. 272, 15–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Ali, N. N. et al. Derivation of type II alveolar epithelial cells from murine embryonic stem cells. Tissue Eng. 8, 541–550 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Toyooka, Y., Tsunekawa, N., Akasu, R. & Noce, T. Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA 100, 11457–11462 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nichols, J. et al. Formation of pluripotent stem cells in the mammalian embryo depends on POU transcription factor, Oct 4. Cell 95, 379–391 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C. & Melton, D. A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science 298, 597–600 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Ivanova, N. B. et al. A stem cell molecular signature. Science 298, 601–604 (2002)

    Article  CAS  PubMed  Google Scholar 

  66. D'Amour, K. A. & Gage, F. H. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc. Natl Acad. Sci. USA 100, 11866–11872 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Potter, S. S., Valerius, M. T. & Brunskill, E. W. Using progenitor cells and gene chips to define genetic pathways. Methods Mol. Biol. 185, 269–284 (2002).

    CAS  PubMed  Google Scholar 

  68. Hemmer, R., Wei, W., Dutriaux, A. & Sedivy, J. Somatic cell knockouts of tumor suppressor genes. Methods Mol. Biol. 223, 187–206 (2003).

    CAS  PubMed  Google Scholar 

  69. Hatada, S., Nikkuni, K., Bentley, S. A., Kirby, S. & Smithies, O. Gene correction in hematopoietic progenitor cells by homologous recombination. Proc. Natl Acad. Sci. USA 97, 13807–13811 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Abuin, A & Bradley, A. Recycling selectable markers in mouse embryonic stem cells. Mol. Cell. Biol. 16, 1851–1856 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mortenson, R. M., Conner, D. A., Chao, S., Geisterfer-Lowrance, A. A. & Seidman, J. G. Production of homozygous mutant ES cells with single targeting construct. Mol. Cell. Biol. 12, 2391–2395 (1992).

    Article  Google Scholar 

  72. Langa, F. et al. Teratocarcinomas induced by embryonic stem (ES) cells lacking vimentin: an approach to study the role of vimentin in tumorigenesis. J. Cell Sci. 113, 3463–3472 (2000).

    CAS  PubMed  Google Scholar 

  73. Ishikawa, H., Ryseck, R. P. & Bravo, R. Characterization of ES cells deficient for the p105 precursor (NF-κB1): role of p50 NLS. Oncogene 13, 255–263 (1996).

    CAS  PubMed  Google Scholar 

  74. Fassler, R. et al. Differentiation and integrity of cardiac muscle cells are impaired in the absence of β1 integrin. J. Cell Sci. 109, 2989–2999 (1996).

    PubMed  Google Scholar 

  75. Gowen, L. C., Johnson, B. L., Latour, A. M., Sulik, K. K. & Koller, B. H. BRCA1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nature Genet. 12, 191–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Snouwaert, J. N. et al. BRCA1 deficient embryonic stem cells display a decreased homologous recombination frequency and an increased non-homologous recombination that is corrected by expression of BRCA1 transgene. Oncogene 18, 7900–7907 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Minamino, T. et al. MEKK1 suppresses oxidative stress-induced apoptosis of embryonic stem cell-derived cardiac myocytes. Proc. Natl Acad. Sci. USA 96, 15127–15132 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Takeshima, H. et al. Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2. EMBO J. 17, 3309–3316 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, H. T. et al. The ryanodine receptor modulates the spontaneous beating rate of cardiomyocytes during development. Proc. Natl Acad. Sci. USA 99, 9225–9230 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang, X., Morham, S. G., Langenbach, R., Baggs, R. B. & Young, D. A. Lack of cyclooxygenase-2 inhibits growth in teratocarcinomas in mice. Exp Cell Res. 254, 232–240 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Moore, R., Radice, G. L., Dominis, M. & Kemler, R. The generation and in vivo differentiation of murine embryonal stem cells genetically null for either N-cadherin or P-cadherin. Int. J. Dev. Biol. 43, 831–834 (1999).

    CAS  PubMed  Google Scholar 

  82. Hertzberg, R. P. & Pope, A. J. High-throughput screening: new technology for the 21st century. Curr. Opinion Chem. Biol. 4, 445–451 (2000).

    Article  CAS  Google Scholar 

  83. Laschinski, G., Vogel, R. & Spielman, H. Cytotoxicity test using blastocyst-derived euploid embryonal stem cells: a new approach to in vitro teratogenesis screening. Reprod. Toxicol. 5, 57–64 (1991).

    Article  CAS  PubMed  Google Scholar 

  84. Spielman, H., Pohl, I., Doring, B., Liebsch, M. & Moldenhauer, F. The embryonic stem cell test, an in vitro embryotoxicity test using two permanent mouse cell lines 3T3 fibroblasts and embryonic stem cells. Toxicol. In Vitro 10, 119–127 (1997).

    Google Scholar 

  85. Balls, M. & Hellstein, E. Statement on the scientific validity of the embryonic stem cell test (EST) — an in vitro test for embryotoxicity. Altern. Lab. Anim. 30, 265–268 (2002).

    PubMed  Google Scholar 

  86. Rudnicki, M. A. & McBurney, M. W. in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed Robertson, E. J.) 19–49 (IRL Oxford, Washington DC, 1987).

    Google Scholar 

  87. Brown, N. Selection of test chemicals for the ECVAM international validation study on in vitro embryotoxicity test. Altern. Lab. Anim. 30, 177–198, (2002).

    CAS  PubMed  Google Scholar 

  88. Spielman, H. et al. Preliminary results of the ECVAM validation study on three in vitro embryotoxicity tests. Altern. Lab. Anim. 29, 301–330 (2001). References 83–85, and 87 and 88, describe the validated use of murine ES cells as an alternative to animal testing in teratology and embryotoxicity testing. This embryonic stem cell test demonstrated excellent alignment in predicting embryotoxicity with known teratogens in vivo.

    Google Scholar 

  89. Bremer, S. et al. Establishment of an in vitro reporter assay for the development of cardiac toxicity. Toxicol. In Vitro 15, 215–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Paparella, M., Kolossov, E., Fleischmann, B. K., Hescheler, J. & Bremer, S. The use of quantitative image analysis in the assessment of in vitro embryotoxicity endpoints based on a novel embryonic stem cell clone with endoderm-related GFP expression. Toxicol. In Vitro 16, 589–597 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Bremer, S., Pellizzer, C., Coecke, S., Paparella, M. & Catalani, P. Detection of the embryotoxic potential of cyclophosphamide by using a combined system of metabolic competent cells and embryonic stem cells. Altern. Lab. Anim. 30, 77–85 (2002).

    CAS  PubMed  Google Scholar 

  92. Suda, Y., Suzuki, M., Ikawa, Y. & Aizawa, S. Mouse embryonic stem cells exhibit indefinite proliferation potential. J. Cell Physiol. 133, 197–201 (1987).

    Article  CAS  PubMed  Google Scholar 

  93. Hancock, C. R., Wetherington, J. P., Lambert, N. A. & Condie, B. G. Neuronal differentiation of cryopreserved neural progenitor cells derived from mouse embryonic stem cells. Biochem. Biophys. Res. Commun. 271, 418–421 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Thomson, J. A. et al. Embryonic stem cells lines derived from human blastocysts. Science 282, 1145–1147 (1998). The first report of a human embryonic stem cell line established from a blastocyst-stage embryo.

    Article  CAS  PubMed  Google Scholar 

  95. Reubinoff, B. E., Peras, M. F., Fong, C. Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differntiation in vitro. Nature Biotechnol. 18, 399–404 (2000).

    Article  CAS  Google Scholar 

  96. Shamblott, M. J. et al. Derivation of pluripotent stem cells from cultured primordial germ cells. Proc. Natl Acad. Sci. USA 95, 13726–13731 (1998). The first report of a human embryonic stem cell line established from primary germ cells of a developing embryo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lebkowski, J. S. et al. Human embryonic stem cells: culture, differentiation and genetic modification for regenerative medicine applications. Cancer J. 7 (Suppl. 2), S83–S93 (2001).

    PubMed  Google Scholar 

  98. Henderson, J. K. et al. Preimplantation human embryos and embryonic stem cells show comparable expression of stage specific antigens. Stem Cells 20, 329–337 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods in culture. Dev. Biol. 227, 271–278 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Itskovitz-Elder, J. et al. Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med. 6, 88–95 (2000).

    Article  Google Scholar 

  101. Amit, M. & Itskovitz-Elder, J. Derivation and spontaneous differentiation of human embryonic stem cells. J. Anat. 200, 225–232 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Schuldiner, M., Yanuka, O., Itskovitz-Elder, J., Melton, D. A. & Benvenisty, N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 97, 11307–11312 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schuldiner, M. et al. Induced neuronal differentiation of human embryonic stem cells. Brain Res. 913, 201–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, S. -C., Werning, M., Duncan, I. D., Brustle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnol. 19, 1129–1133 (2001).

    Article  CAS  Google Scholar 

  106. Rambhatla, L., Chiu, C. P., Kundu, P., Peng, Y. & Carpenter, M. K. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant. 12, 1–11 (2003).

    Article  PubMed  Google Scholar 

  107. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Elder, J. & Langer, R. Endothelial cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 99, 4391–4396 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Eiges, R. et al. Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr. Biol. 11, 514–518 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Ma, Y., Ramezani, A., Lewis, R., Hawley, R. G. & Thomson, J. A. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 21, 111–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Zwaka, T. P. & Thomson, J. A. Homologous recombination in human embryonic stem cells. Nature Biotechnol. 21, 319–321 (2003). The first demonstration that human ES cells maintain the genetic machinery capable of directing homologous recombination at frequencies previously observed only in murine ES cells. The investigators established novel protocols for achieving high transfection efficiencies based on cellular differences between murine and human ES cells.

    Article  CAS  Google Scholar 

  111. Walke, D. W. et al. In vivo drug target discovery: identifying the best targets from the genome. Curr. Opin. Biotechnol. 12, 626–631 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  Google Scholar 

  113. Holden, C. & Vogel, G. “Show us the cells” U. S. researchers say. Science 297, 923–925 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult bone marrow. Nature 418, 41–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Broxmeyer, H. E. et al. High efficiency recovery of functional hematopoietic progenitor and stem cells from human cord blood cryopreserved for 15 years. Proc. Natl Acad. Sci. USA 100, 645–650 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zuk, P. A. et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol. Cell 13, 4279–4295 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Roach, M. et al. Attenuation of erythropoiesis by REDK (DYRK3) in an embryonic stem cell-based in vitro differentiation model. First Annu. Mtg Int. Soc. Stem Cell Res. A86 (2003).

Download references

Acknowledgements

The author acknowledges the contributions of G. Cezar, K. Haskell, M. Roach with figures, J. Hambor and K. Neote in generating Box 1, P. Vickers for critically reading of the manuscript and T. Kelleher for encouragement. Finally without the love and support of my family this manuscript would not have been possible.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

LocusLink

CCR2

glucagon receptor

LIF

MEKK1

Myf5

NANOG

nestin

p50

p105

PAX4

POUSF1

RelA

WNK1

FURTHER INFORMATION

Online Mendelian Inheritance in Man

Alzheimer's disease

Parkinson's disease

National Institutes of Health Stem Cell Information

Glossary

TARGET

Gene product that therapeutic approaches are directed against in the search for new medicines.

EMBRYONIC STEM CELLS

(ES). Undifferentiated cells typically derived from the inner cell mass of a blastocyst-stage embryo. In culture, these cells can self-renew in the undifferentiated state or reveal their pluripotentcy on differentiation into cell types of the three embryonic germ lineages. Mouse ES cells readily differentiate into all somatic and germ lineages when incorporated into chimeric offspring through blastocyst microinjection or morula aggregation.

KNOCKOUT MICE

Mice derived from gene-targeting experiments in ES cells with mutations in selected genes that result in the complete ablation of gene expression. These induced mutations are passed through the germline, allowing the derivation of novel lines of gene KO mice for functional evaluation in vivo.

HOMOLOGOUS RECOMBINATION

Genetic recombination between identical (or nearly identical) double-stranded DNA sequences. This process occurs at a relatively high frequency in ES cells, allowing the engineering of gene-targeting vectors to direct pre-planned mutagenesis in ES cells.

DIFFERENTIATION

Process in which a cell progresses in a linear manner to a specialized state. Stem cells can develop into any specialized cell type – for example, neuronal, muscle, hepatic and haematopoietic cells.

EMBRYOID BODIES

Spherical cell clusters observed after spontaneous or induced differentiation of ES cells in culture: Embryoid bodies show differentiation that recapitulates the early stages of mammalian embryonic development, including cell types derived from endoderm, mesoderm and ectodermal lineages.

PLURIPOTENT

The ability to differentiate into all cell types derived from the three embryonic germ lineages: ectoderm, mesoderm and endoderm.

ANEUPLOID

Cells with abnormal number of chromosome sets.

TERATOMA

A rare tumour type that typically arises in the gonads and demonstrates mixed cellular populations of all three embryonic germ layers. Investigators can assess the differentiation capacity of stem cells by injection of pluripotent cells into laboratory animals and inducing the formation of teratomas in situ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNeish, J. Embryonic stem cells in drug discovery. Nat Rev Drug Discov 3, 70–80 (2004). https://doi.org/10.1038/nrd1281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd1281

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing