Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Fractionalized topological insulators

Abstract

Topological insulators have emerged as a major topic of condensed matter physics research, with several novel applications proposed. Although there are now a number of established experimental examples of materials in this class, all of them can be described by theories based on electronic band structure, which implies that they do not possess electronic correlations strong enough to fundamentally change this theoretical description. Here, we review recent theoretical progress in the description of a class of strongly correlated topological insulators—fractionalized topological insulators—where band theory fails owing to the fractionalization of the electron into other degrees of freedom.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fractionalized topological insulators accessed by the U(1) slave-rotor description.
Figure 2: Fractionalized topological insulators accessed by the slave-Ising description.
Figure 3: Fractional topological insulators.

Similar content being viewed by others

References

  1. Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

    Article  ADS  Google Scholar 

  2. Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  3. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    Article  ADS  Google Scholar 

  4. Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

    Article  ADS  Google Scholar 

  5. Raghu, S., Qi, X-L., Honerkamp, C. & Zhang, S-C. Topological Mott insulators. Phys. Rev. Lett. 100, 156401 (2008).

    Article  ADS  Google Scholar 

  6. Zhang, Y., Ran, Y. & Vishwanath, A. Topological insulators in three dimensions from spontaneous symmetry breaking. Phys. Rev. B 79, 245331 (2009).

    Article  ADS  Google Scholar 

  7. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    Article  ADS  Google Scholar 

  8. Zhang, X., Zhang, H., Wang, J., Felser, C. & Zhang, S-C. Actinide topological insulator materials with strong interaction. Science 335, 1464–1466 (2012).

    Article  ADS  Google Scholar 

  9. Chen, X., Gu, Z-C., Liu, Z-X. & Wen, X-G. Symmetry-protected topological orders in interacting bosonic systems. Science 338, 1604–1606 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  10. Mesaros, A. & Ran, Y. Classification of symmetry enriched topological phases with exactly solvable models. Phys. Rev. B 87, 155115 (2013).

    Article  ADS  Google Scholar 

  11. Kapustin, A. Symmetry protected topological phases, anomalies, and cobordisms: Beyond group cohomology. Preprint at http://arxiv.org/abs/1403.1467 (2014).

  12. Florens, S. & Georges, A. Slave-rotor mean-field theories of strongly correlated systems and the Mott transition in finite dimensions. Phys. Rev. B 70, 035114 (2004).

    Article  ADS  Google Scholar 

  13. Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  ADS  Google Scholar 

  14. He, J., Kou, S-P., Liang, Y. & Feng, S. Chiral spin liquid in a correlated topological insulator. Phys. Rev. B 83, 205116 (2011).

    Article  ADS  Google Scholar 

  15. Young, M. W., Lee, S-S. & Kallin, C. Fractionalized quantum spin Hall effect. Phys. Rev. B 78, 125316 (2008).

    Article  ADS  Google Scholar 

  16. Rachel, S. & Le Hur, K. Topological insulators and Mott physics from the Hubbard interaction. Phys. Rev. B 82, 075106 (2010).

    Article  ADS  Google Scholar 

  17. Pesin, D. & Balents, L. Mott physics and band topology in materials with strong spin–orbit coupling. Nature Phys. 6, 376–381 (2010).

    Article  ADS  Google Scholar 

  18. Kargarian, M., Wen, J. & Fiete, G. A. Competing exotic topological insulator phases in transition-metal oxides on the pyrochlore lattice with distortion. Phys. Rev. B 83, 165112 (2011).

    Article  ADS  Google Scholar 

  19. Kargarian, M. & Fiete, G. A. Topological crystalline insulators in transition metal oxides. Phys. Rev. Lett. 110, 156403 (2013).

    Article  ADS  Google Scholar 

  20. Witczak-Krempa, W., Choy, T. P. & Kim, Y. B. Gauge field fluctuations in three-dimensional topological Mott insulators. Phys. Rev. B 82, 165122 (2010).

    Article  ADS  Google Scholar 

  21. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  22. Senthil, T. & Fisher, M. P. A. gauge theory of electron fractionalization in strongly correlated systems. Phys. Rev. B 62, 7850–7881 (2000).

    Article  ADS  Google Scholar 

  23. Rüegg, A., Huber, S. D. & Sigrist, M. slave-spin theory for strongly correlated fermions. Phys. Rev. B 81, 155118 (2010).

    Article  ADS  Google Scholar 

  24. Maciejko, J. & Rüegg, A. Topological order in a correlated Chern insulator. Phys. Rev. B 88, 241101 (2013).

    Article  ADS  Google Scholar 

  25. RĂĽegg, A. & Fiete, G. A. Topological order and semions in a strongly correlated quantum spin Hall insulator. Phys. Rev. Lett. 108, 046401 (2012).

    Article  ADS  Google Scholar 

  26. Maciejko, J., Chua, V. & Fiete, G. A. Topological order in a correlated three-dimensional topological insulator. Phys. Rev. Lett. 112, 016404 (2014).

    Article  ADS  Google Scholar 

  27. Hansson, T. H., Oganesyan, V. & Sondhi, S. L. Superconductors are topologically ordered. Ann. Phys. 313, 497–538 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  28. Cho, G. Y. & Moore, J. E. Topological BF field theory description of topological insulators. Ann. Phys. 326, 1515–1535 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  29. Parameswaran, S. A., Roy, R. & Sondhi, S. L. Fractional quantum Hall physics in topological flat bands. C.R. Phys. 14, 816–839 (2013).

    Article  ADS  Google Scholar 

  30. Bergholtz, E. J. & Liu, Z. Topological flat band models and fractional Chern insulators. Int. J. Mod. Phys. B 27, 1330017 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  31. Bernevig, B. A. & Zhang, S-C. Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).

    Article  ADS  Google Scholar 

  32. Levin, M. & Stern, A. Fractional topological insulators. Phys. Rev. Lett. 103, 196803 (2009).

    Article  ADS  Google Scholar 

  33. Karch, A., Maciejko, J. & Takayanagi, T. Holographic fractional topological insulators in 2 + 1 and 1 + 1 dimensions. Phys. Rev. D 82, 126003 (2010).

    ADS  Google Scholar 

  34. Lu, Y-M. & Ran, Y. Symmetry-protected fractional Chern insulators and fractional topological insulators. Phys. Rev. B 85, 165134 (2012).

    Article  ADS  Google Scholar 

  35. Chan, A., Hughes, T. L., Ryu, S. & Fradkin, E. Effective field theories for topological insulators by functional bosonization. Phys. Rev. B 87, 085132 (2013).

    Article  ADS  Google Scholar 

  36. Maciejko, J., Qi, X-L., Karch, A. & Zhang, S-C. Fractional topological insulators in three dimensions. Phys. Rev. Lett. 105, 246809 (2010).

    Article  ADS  Google Scholar 

  37. Swingle, B., Barkeshli, M., McGreevy, J. & Senthil, T. Correlated topological insulators and the fractional magnetoelectric effect. Phys. Rev. B 83, 195139 (2011).

    Article  ADS  Google Scholar 

  38. Hoyos, C., Jensen, K. & Karch, A. Holographic fractional topological insulators. Phys. Rev. D 82, 086001 (2010).

    Article  ADS  Google Scholar 

  39. Maciejko, J., Qi, X-L., Karch, A. & Zhang, S-C. Models of three-dimensional fractional topological insulators. Phys. Rev. B 86, 235128 (2012).

    Article  ADS  Google Scholar 

  40. Swingle, B. Experimental signatures of three-dimensional fractional topological insulators. Phys. Rev. B 86, 245111 (2012).

    Article  ADS  Google Scholar 

  41. McGreevy, J., Swingle, B. & Tran, K-A. Wave functions for fractional Chern insulators. Phys. Rev. B 85, 125105 (2012).

    Article  ADS  Google Scholar 

  42. Neupert, T., Santos, L., Ryu, S., Chamon, C. & Mudry, C. Fractional topological liquids with time-reversal symmetry and their lattice realization. Phys. Rev. B 84, 165107 (2011).

    Article  ADS  Google Scholar 

  43. Repellin, C., Bernevig, B. A. & Regnault, N. fractional topological insulators in two dimensions. Phys. Rev. B 90, 245401 (2014).

    Article  ADS  Google Scholar 

  44. Levin, M., Burnell, F. J., Koch-Janusz, M. & Stern, A. Exactly soluble models for fractional topological insulators in two and three dimensions. Phys. Rev. B 84, 235145 (2011).

    Article  ADS  Google Scholar 

  45. Koch-Janusz, M., Levin, M. & Stern, A. Exactly soluble lattice models for non-Abelian states of matter in two dimensions. Phys. Rev. B 88, 115133 (2013).

    Article  ADS  Google Scholar 

  46. Motrunich, O. I. & Fisher, M. P. A. d-wave correlated critical Bose liquids in two dimensions. Phys. Rev. B 75, 235116 (2007).

    Article  ADS  Google Scholar 

  47. Schroeter, D. F., Kapit, E., Thomale, R. & Greiter, M. Spin Hamiltonian for which the chiral spin liquid is the exact ground state. Phys. Rev. Lett. 99, 097202 (2007).

    Article  ADS  Google Scholar 

  48. Mei, J-W. & Wen, X-G. Design local spin models for Gutzwiller-projected parton wave functions. Preprint at http://arxiv.org/abs/1407.0869 (2014).

  49. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin–orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    Article  ADS  Google Scholar 

  50. Dzero, M. & Galitski, V. A new exotic state in an old material: A tale of SmB6 . J. Exp. Theor. Phys. 117, 499–507 (2013).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to our collaborators in this area, V. Chua, A. Karch, M. Kargarian, X-L. Qi, A. Rüegg, T. Takayanagi, C-C. J. Wang, J. Wen and S-C. Zhang. Our work was generously funded by the ARO, DARPA, DOE, NSF, the Simons Foundation, NSERC, CRC, CIFAR and start-up funds from the University of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Maciejko.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciejko, J., Fiete, G. Fractionalized topological insulators. Nature Phys 11, 385–388 (2015). https://doi.org/10.1038/nphys3311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing