Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Field-induced polarization of Dirac valleys in bismuth

Abstract

The electronic structure of certain crystal lattices can contain multiple degenerate ’valleys’ for their charge carriers to occupy. This valley degree of freedom could be useful in the development of electronic devices. The principal challenge in the development of ’valleytronics’ is to lift the valley degeneracy of charge carriers in a controlled way. Here we show that in semi-metallic bismuth the flow of Dirac fermions along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. At high temperature and low magnetic field, bismuth’s three valleys are interchangeable and the three-fold symmetry of its lattice is maintained. As the temperature is decreased or the magnetic field increased, this symmetry is spontaneously lost. This loss may be an experimental manifestation of the recently proposed valley-nematic Fermi liquid state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The experimental configuration, the structure of the Fermi surface and angle-dependent magnetoresistance.
Figure 2: The contribution of different components of the Fermi surface to the total conductivity in polar coordinates.
Figure 3: Field-induced valley polarization across a wide temperature range.
Figure 4: Spontaneous loss of three-fold symmetry by lowering the temperature or increasing the magnetic field.
Figure 5: Magnetoresistance data with rotation in two perpendicular planes.
Figure 6: The emerging magnetoresistance anisotropy at different magnetic fields.

Similar content being viewed by others

References

  1. Rycerz, A., Tworzydlo, J. & Beenakker, C. W. J. Valley filter and valley valve in graphene. Nature Phys. 3, 172–175 (2007).

    Article  ADS  Google Scholar 

  2. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  ADS  Google Scholar 

  3. Min, H., Borghi, G., Polini, M. & MacDonald, A. H. Pseudospin magnetism in graphene. Phys. Rev. B 77, 041407 (2008).

    Article  ADS  Google Scholar 

  4. Gunlycke, D. & White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 106, 136806 (2011).

    Article  ADS  Google Scholar 

  5. Shayegan, M., De Poortere, E. P., Gunawan, O., Shkolnikov, Y. P., Tutuc, E. & Vakili, K. Two-dimensional electrons occupying multiple valleys in AlAs. Phys. Status Solidi B 243, 3629–3642 (2006).

    Article  ADS  Google Scholar 

  6. Bishop, N. C., Padmanabhan, M., Vakili, K., Shkolnikov, Y. P., De Poortere, E. P. & Shayegan, M. Valley polarization and susceptibility of composite fermions around a filling factor ν=3/2. Phys. Rev. Lett. 98, 266404 (2007).

    Article  ADS  Google Scholar 

  7. Eng, K., McFarland, R. N. & Kane, B. E. Integer quantum Hall effect on a six-valley hydrogen-passivated silicon (111) surface. Phys. Rev. Lett. 99, 016801 (2007).

    Article  ADS  Google Scholar 

  8. Takashina, K, Ono, Y., Fujiwara, A., Takahashi, Y. & Hirayama, Y. Valley polarization in Si(100) at zero magnetic field. Phys. Rev. Lett. 96, 236801 (2006).

    Article  ADS  Google Scholar 

  9. Abanin, D. A., Parameswaran, S. A., Kivelson, S. A. & Sondhi, S. L. Nematic valley ordering in quantum Hall systems. Phys. Rev. B 82, 035428 (2010).

    Article  ADS  Google Scholar 

  10. Edelman, V. S. Electrons in bismuth. Adv. Phys. 25, 555–613 (1976).

    Article  ADS  Google Scholar 

  11. Liu, Y. & Allen, R. E. Electronic structure of the semimetals Bi and Sb. Phys. Rev. B 52, 1566–1577 (1995).

    Article  ADS  Google Scholar 

  12. Wolff, P. A. Matrix elements and selection rules for the two-band model of bismuth. J. Phys. Chem. Solids 25, 1057–1068 (1964).

    Article  ADS  Google Scholar 

  13. McClure, J. W. The energy band model for bismuth: Resolution of a theoretical discrepancy. J. Low Temp. Phys. 25, 527–540 (1976).

    Article  ADS  Google Scholar 

  14. Vecchi, M. P., Pereira, J. R. & Dresselhaus, M. S. Anomalies in the magnetoreflection spectrum of bismuth in the low-quantum-number limit. Phys. Rev. B 14, 298317 (1976).

    Article  Google Scholar 

  15. Zhu, Z., Fauqué, B., Fuseya, Y. & Behnia, K. Angle-resolved Landau spectrum of electrons and holes in bismuth. Phys. Rev. B 84, 115137 (2011).

    Article  ADS  Google Scholar 

  16. Behnia, K., Balicas, L. & Kopelevich, Y. Signatures of electron fractionalization in ultraquantum bismuth. Science 317, 1729–1731 (2007).

    Article  ADS  Google Scholar 

  17. Li, L. et al. Phase transitions of Dirac electrons in bismuth. Science 321, 547–550 (2008).

    Article  ADS  Google Scholar 

  18. Yang, H., Fauqué, B., Malone, L., Antunes, A. B., Zhu, Z. & Behnia, K. Phase diagram of bismuth in the extreme quantum limit. Nature Commun. 1, 47 (2010).

    Article  Google Scholar 

  19. Alicea, J. & Balents, L. Bismuth in strong magnetic fields: Unconventional Zeeman coupling and correlation effects. Phys. Rev. B 79, 241101 (2009).

    Article  ADS  Google Scholar 

  20. Sharlai Yu, V. & Mikitik, G. P. Origin of the peaks in the Nernst coefficient of bismuth in strong magnetic fields. Phys. Rev. B 79, 081102 (2009).

    Article  ADS  Google Scholar 

  21. Du, X., Tsai, S-W., Maslov, D. L. & Hebard, A. F. Metal–insulator-like behavior in semimetallic bismuth and graphite. Phys. Rev. Lett. 94, 166601 (2005).

    Article  ADS  Google Scholar 

  22. Hartman, R. Temperature dependence of the low-field galvanomagnetic coefficients of bismuth. Phys. Rev. 181, 1070–1086 (1969).

    Article  ADS  Google Scholar 

  23. Mase, S., von Molnar, S. & Lawson, A. W. Galvanometric tensor of bismuth at 20.4 K. Phys. Rev. 127, 1030–1045 (1962).

    Article  ADS  Google Scholar 

  24. Ziman, J. M. Electrons and phonons (Oxford Univ. Press, 1960).

    MATH  Google Scholar 

  25. Ast, C. R. & Höchst, H. Fermi surface of Bi(111) measured by photoemission spectroscopy. Phys. Rev. Lett. 87, 177602 (2001).

    Article  ADS  Google Scholar 

  26. Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    Article  ADS  Google Scholar 

  27. Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82, 394–397 (1999).

    Article  ADS  Google Scholar 

  28. Borzi, R. A. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7 . Science 315, 214–217 (2007).

    Article  ADS  Google Scholar 

  29. Okazaki, R. et al. Rotational symmetry breaking in the hidden-order phase of URu2Si2 . Science 331, 439–442 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Y. Fuseya, A. J. Millis and N. P. Ong for discussions. This work is supported by ANR as part of DELICE and QUANTHERM projects and by a grant attributed by the Ile de France regional council. W.K. is supported by the government of Korea through NRF of Korea Grants (2011-0000982, 0018744, 0019893). We also acknowledge STAR, a France-Korea collaboration program.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and A.C. (assisted by B.F.) carried out the measurements and (assisted by K.B. and B.F.) analysed the data. W.K. made the set-up and obtained the data leading to Fig. 5. K.B. led the project and wrote the paper.

Corresponding author

Correspondence to Kamran Behnia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Z., Collaudin, A., Fauqué, B. et al. Field-induced polarization of Dirac valleys in bismuth. Nature Phys 8, 89–94 (2012). https://doi.org/10.1038/nphys2111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys2111

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing