Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong and tunable nonlinear optomechanical coupling in a low-loss system

Abstract

A major goal in optomechanics is to observe and control quantum behaviour in a system consisting of a mechanical resonator coupled to an optical cavity. Work towards this goal has focused on increasing the strength of the coupling between the mechanical and optical degrees of freedom. However, the form of this coupling is crucial in determining which phenomena can be observed in such a system. Here we demonstrate that avoided crossings in the spectrum of an optical cavity containing a flexible dielectric membrane enable us to realize several different forms of the optomechanical coupling. These include cavity detunings that are (to lowest order) linear, quadratic or quartic in the membrane’s displacement, and a cavity finesse that is linear in (or independent of) the membrane’s displacement. All these couplings are realized in a single device with extremely low optical loss and can be tuned over a wide range in situ. In particular, we find that the quadratic coupling can be increased three orders of magnitude beyond previous devices. As a result of these advances, the device presented here should be capable of demonstrating the quantization of the membrane’s mechanical energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Avoided crossings in cavity spectra.
Figure 2: Tunability of avoided crossings for the membrane tilted by 0.48 mrad about .
Figure 3: Optical relaxation gradients at avoided crossings.
Figure 4: Quartic and double-well optomechanical coupling.

Similar content being viewed by others

References

  1. Kippenberg, T. J. & Vahala, K. J. Cavity opto-mechanics. Opt. Express 15, 17172–17205 (2007).

    Article  ADS  Google Scholar 

  2. Schliesser, A., Arcizet, O., Riviere, R., Anetsberger, G. & Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys. 5, 509–514 (2009).

    Article  ADS  Google Scholar 

  3. Groblacher, S. et al. Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity. Nature Phys. 5, 485–488 (2009).

    Article  ADS  Google Scholar 

  4. Park, Y-S. & Wang, H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nature Phys. 5, 489–493 (2009).

    Article  ADS  Google Scholar 

  5. Arcizet, O. et al. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006).

    Article  ADS  Google Scholar 

  6. Abbott, B. et al. Observation of a kilogram-scale oscillator near its quantum ground state. New J. Phys. 11, 073032 (2009).

    Article  ADS  Google Scholar 

  7. Anetsberger, G. et al. Near-field cavity optomechanics with nanomechanical oscillators. Nature Phys. 5, 909–914 (2009).

    Article  ADS  Google Scholar 

  8. Marquardt, F., Chen, J. P., Clerk, A. A. & Girvin, S. M. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007).

    Article  ADS  Google Scholar 

  9. Rae, I. W., Nooshi, N., Zwerger, W. & Kippenberg, T. J. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007).

    Article  ADS  Google Scholar 

  10. Braginskii, V. B. & Vorontsov, Y. I. Quantum-mechanical limitations in macroscopic experiments and modern experimental technique. Sov. Phys. Usp. 17, 644–650 (1975).

    Article  ADS  Google Scholar 

  11. Caves, C. M. Quantum-mechanical radiation-pressure fluctuations in an interferometer. Phys. Rev. Lett. 45, 75–79 (1980).

    Article  ADS  Google Scholar 

  12. Mancini, S. & Tombesi, P. Quantum noise reduction by radiation pressure. Phys. Rev. A 49, 4055–4065 (1994).

    Article  ADS  Google Scholar 

  13. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72–75 (2008).

    Article  ADS  Google Scholar 

  14. Clerk, A. A., Marquardt, F. & Harris, J. G. E. Quantum measurement of phonon shot noise. Phys. Rev. Lett. 104, 213603 (2010).

    Article  ADS  Google Scholar 

  15. Jayich, A. M. et al. Dispersive optomechanics: A membrane inside a cavity. New J. Phys. 10, 095008 (2008).

    Article  ADS  Google Scholar 

  16. Sankey, J. C., Jayich, A. M., Zwickl, B. M., Yang, C. & Harris, J. G. E. Proc. XXI Intl. Conf. Atomic Phys. (World Scientific, 2009).

    Google Scholar 

  17. Heinrich, G., Harris, J. G. E. & Marquardt, F. Photon shuttle: Landau–Zener–Stückelberg dynamics in an optomechanical system. Phys. Rev. A 81, 011801 (2010).

    Article  ADS  Google Scholar 

  18. Elste, F., Girvin, S. M. & Clerk, A. A. Quantum noise interference and backaction cooling in cavity nanomechanics. Phys. Rev. Lett. 102, 207209 (2009).

    Article  ADS  Google Scholar 

  19. Wilson, D. J., Regal, C. A., Papp, S. B. & Kimble, H. J. Cavity optomechanics with stoichiometric SiN films. Phys. Rev. Lett. 103, 207204 (2009).

    Article  ADS  Google Scholar 

  20. Miao, H., Danilishin, S., Corbitt, T. & Chen, Y. Standard quantum limit for probing mechanical energy quantization. Phys. Rev. Lett. 103, 100402 (2009).

    Article  ADS  Google Scholar 

  21. Zwickl, B. M. et al. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 92, 103125 (2008).

    Article  ADS  Google Scholar 

  22. Yurke, B. & Stoler, D. Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 57, 13–16 (1986).

    Article  ADS  Google Scholar 

  23. Jacobs, K. Engineering quantum states of a nanoresonator via a simple auxiliary system. Phys. Rev. Lett. 99, 117203 (2007).

    Article  ADS  Google Scholar 

  24. Nunnenkamp, A., Borkje, K., Harris, J. G. E. & Girvin, S. M. Cooling and squeezing via quadratic optomechanical coupling. Preprint at http://arxiv.org/abs/1004.2510 (2010).

Download references

Acknowledgements

We would like to thank H. Cao, A. Clerk, F. Marquardt, S. M. Girvin, A. Nunnenkamp and D. Schuster. This work has been supported by grants from the NSF (No. 0855455 and No. 0653377) and AFOSR (No. FA9550-90-1-0484). J.G.E.H. acknowledges support from the Alfred P. Sloan Foundation. This material is based on work supported by DARPA Award No. N6601-09-1-2100 and W911NF-09-1-0015.

Author information

Authors and Affiliations

Authors

Contributions

J.C.S. made the measurements, developed the perturbation theory and carried out the data analysis. C.Y., B.M.Z. and A.M.J. assisted with each phase of the project. J.G.E.H. supervised each phase of the project.

Corresponding author

Correspondence to J. G. E. Harris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankey, J., Yang, C., Zwickl, B. et al. Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nature Phys 6, 707–712 (2010). https://doi.org/10.1038/nphys1707

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1707

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing