Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tuning intermolecular interaction in long-range-ordered submonolayer organic films

Abstract

The future success of organic electronic devices strongly depends on the ability to tailor the properties of thin films and interfaces. This calls for well-ordered thin films. However, their properties are dominantly influenced by the formation of the first molecular layer representing a template for further growth. The development of the first layer—in turn—depends on the fine balance of molecule–substrate and molecule–molecule interaction. The latter is usually attractive owing to van der Waals forces and causes the formation of islands and small crystalline grains. Here, we report on organic adsorbates exhibiting a repulsive intermolecular interaction. With increasing coverage, Sn-phthalocyanine molecules continuously rearrange on Ag(111) in a series of ordered superstructures. They always fill the surface terraces homogeneously and maximize the domain size. Thicker films also exhibit extremely large, monocrystalline grains and potentially enable bulk-like properties for thin films. The intermolecular interaction can be tuned by cooling and becomes attractive below 120 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Sn-phthalocyanine molecule and its phase diagram on adsorption on Ag(111).
Figure 2: Experimental evidence for intermolecular repulsion.
Figure 3: Schematic diagram illustrating the XSW results.
Figure 4: Donation/backdonation effect as the origin of molecular repulsion.

Similar content being viewed by others

References

  1. Sun, Y. R. et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908–912 (2006).

    Article  ADS  Google Scholar 

  2. Forrest, S. R. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem. Rev. 97, 1793–1896 (1997).

    Article  Google Scholar 

  3. Eremtchenko, M., Schaefer, J. A. & Tautz, F. S. Understanding and tuning the epitaxy of large aromatic adsorbates by molecular design. Nature 425, 603–605 (2003).

    Article  ADS  Google Scholar 

  4. Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65, 151–256 (2000).

    Article  ADS  Google Scholar 

  5. Hirose, Y., Forrest, S. R. & Kahn, A. Quasiepitaxial growth of the organic molecular semiconductor 3,4,9,10-perylenetetracarboxylic dianhydride. Phys. Rev. B 52, 14040–14047 (1995).

    Article  ADS  Google Scholar 

  6. Rosei, F. et al. Properties of large organic molecules on metal surfaces. Prog. Surf. Sci. 71, 95–164 (2003).

    Article  ADS  Google Scholar 

  7. Kilian, L., Umbach, E. & Sokolowski, M. Molecular beam epitaxy of organic films investigated by high resolution low energy electron diffraction (SPA-LEED): 3,4,9,10-perylenetetracarboxylicacid-dianhydride (PTCDA) on Ag(111). Surf. Sci. 573, 359–378 (2004).

    Article  ADS  Google Scholar 

  8. Vazquez, H., Flores, F. & Kahn, A. Induced density of states model for weakly-interacting organic semiconductor interfaces. Org. Electron. 8, 241–248 (2007).

    Article  Google Scholar 

  9. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

    Article  Google Scholar 

  10. Hill, I. G., Rajagopal, A., Kahn, A. & Hu, Y. Molecular level alignment at organic semiconductor-metal interfaces. Appl. Phys. Lett. 73, 662–664 (1998).

    Article  ADS  Google Scholar 

  11. Zou, Y. et al. Chemical bonding of PTCDA on Ag surfaces and the formation of interface states. Surf. Sci. 600, 1240–1251 (2006).

    Article  ADS  Google Scholar 

  12. Park, Y. D., Lim, J. A., Lee, H. S. & Cho, K. Interface engineering in organic transistors. Mater. Today 10, 46–54 (2007).

    Article  Google Scholar 

  13. Wang, S. D., Kanai, K., Ouchi, Y. & Seki, K. Bottom contact ambipolar organic thin film transistor and organic inverter based on C-60/pentacene heterostructure. Org. Electron. 7, 457–464 (2006).

    Article  Google Scholar 

  14. Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007).

    Article  Google Scholar 

  15. Mitschke, U. & Bäuerle, P. The electroluminescence of organic materials. J. Mater. Chem. 10, 1471–1507 (2000).

    Article  Google Scholar 

  16. Pfeiffer, M. et al. Doped organic semiconductors: Physics and application in light emitting diodes. Org. Electron. 4, 89–103 (2003).

    Article  Google Scholar 

  17. Schneider, M., Umbach, E. & Sokolowski, M. Growth-dependent optical properties of 3,4,9,10-perylenetetracarboxylicacid-dianhydride (PTCDA) films on Ag(111). Chem. Phys. 325, 185–192 (2006).

    Article  Google Scholar 

  18. Stahl, U., Gador, D., Soukopp, A., Fink, R. & Umbach, E. Coverage-dependent superstructures in chemisorbed NTCDA monolayers: A combined LEED and STM study. Surf. Sci. 414, 423–434 (1998).

    Article  ADS  Google Scholar 

  19. Kilian, L. et al. The commensurate-to-incommensurate phase transition of an organic monolayer: A high resolution LEED analysis of the superstructures of NTCDA on Ag(111). Surf. Sci. 602, 2427–2434 (2008).

    Article  ADS  Google Scholar 

  20. Umbach, E., Sokolowski, M. & Fink, R. Substrate-interaction, long range order and epitaxy of large organic adsorbates. Appl. Phys. A 63, 565–576 (1996).

    Article  ADS  Google Scholar 

  21. Glöckler, K. et al. Highly ordered structures and submolecular scanning tunnelling microscopy contrast of PTCDA and DM-PBDCI monolayers on Ag(111) and Ag(110). Surf. Sci. 405, 1–20 (1998).

    Article  ADS  Google Scholar 

  22. Temirov, R., Soubatch, S., Luican, A. & Tautz, F. S. Free-electron-like dispersion in an organic monolayer film on a metal substrate. Nature 444, 350–353 (2006).

    Article  ADS  Google Scholar 

  23. Lackinger, M., Griessl, S., Heckl, W. M. & Hietschold, M. Coronene on Ag(111) investigated by LEED and STM in UHV. J. Phys. Chem. B 106, 4482–4485 (2002).

    Article  Google Scholar 

  24. Fernandez-Torrente, I. et al. Long-range repulsive interaction between molecules on a metal surface induced by charge transfer. Phys. Rev. Lett. 99, 176103 (2007).

    Article  ADS  Google Scholar 

  25. Yokayama, T., Takahashi, T., Shinozaki, K. & Okamoto, M. Quantitative analysis of long-range interactions between adsorbed dipolar molecules on Cu(111). Phys. Rev. Lett. 98, 206102 (2007).

    Article  ADS  Google Scholar 

  26. Langner, A., Hauschild, A., Fahrenholz, S. & Sokolowski, M. Structural properties of tetracene films on Ag(111) investigated by SPA-LEED and TPD. Surf. Sci. 574, 153–165 (2005).

    Article  ADS  Google Scholar 

  27. Gonella, G., Dai, H.-L. & Rockey, T. J. Tetracene monolayer and multilayer thin films on Ag(111): Substrate-adsorbate charge-transfer bonding and inter-adsorbate interaction. J. Phys. Chem. C 112, 4696–4703 (2008).

    Article  Google Scholar 

  28. Pawin, G., Wong, K. L., Kwon, K.-Y. & Bartels, L. A homomolecular porous network at a Cu(111) surface. Science 313, 961–962 (2006).

    Article  ADS  Google Scholar 

  29. de Paola, R. A., Hoffmann, F. M., Heskett, D. & Plummer, E. W. Absorption of molecular nitrogen on clean and modified Ru(001) surfaces—the role of sigma-bonding. Phys. Rev. B 35, 4236–4249 (1987).

    Article  ADS  Google Scholar 

  30. Penka, V., Christmann, K. & Ertl, G. Ordered low-temperature phases in the H/Ni(110) system. Surf. Sci. 136, 307–318 (1984).

    Article  ADS  Google Scholar 

  31. Lukas, S., Witte, G. & Wöll, Ch. Novel mechanism for molecular self-assembly on metal substrates: Unidirectional rows of pentacene on Cu(110) produced by a substrate-mediated repulsion. Phys. Rev. Lett. 88, 028301 (2002).

    Article  ADS  Google Scholar 

  32. McKeown, B. B. Phthalocyanine Materials (Cambridge Univ. Press, 1998).

    Google Scholar 

  33. Fukagawa, H., Yamane, H., Kera, S., Okudaira, K. K. & Ueno, N. Experimental estimation of the electric dipole moment and polarizability of titanyl phthalocyanine using ultraviolet photoelectron spectroscopy. Phys. Rev. B 73, 041302(R) (2006).

    Article  ADS  Google Scholar 

  34. Mannsfeld, S. C. B. & Fritz, T. Analysis of the substrate influence on the ordering of epitaxial molecular layers: The special case of point-on-line coincidence. Phys. Rev. B 69, 075416 (2004).

    Article  ADS  Google Scholar 

  35. Lackinger, M. & Hietschold, M. Determining adsorption geometry of individual tin–phthalocyanine molecules on Ag(111)—a STM study at submonolayer coverage. Surf. Sci. 520, L619–L624 (2002).

    Article  ADS  Google Scholar 

  36. Stadler, C. et al. Structural investigation of the adsorption of SnPc on Ag(111) using normal-incidence X-ray standing waves. Phys. Rev. B 74, 035404 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Pollinger and the ESRF staff (T.-L. Lee, J. Zegenhagen) for their help during the XSW experiments. Financial support by the BMBF, the DFG and the ESRF is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

C.S. carried out all SPA-LEED experiments. S.H. participated in measurements on SnPc and I.K. in those on CuPc. XSW measurements were carried out by C.S., C.K., S.H. and I.K., and analysed by C.S. The experiments, data analysis and the manuscript were intensively discussed by C.S., C.K. and E.U. The paper was written by C.S. and C.K.

Corresponding author

Correspondence to Christian Kumpf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, C., Hansen, S., Kröger, I. et al. Tuning intermolecular interaction in long-range-ordered submonolayer organic films. Nature Phys 5, 153–158 (2009). https://doi.org/10.1038/nphys1176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1176

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing