Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superconducting nanocircuits for topologically protected qubits

Abstract

For successful realization of a quantum computer, its building blocks—the individual qubits—should be simultaneously scalable and sufficiently protected from environmental noise. Recently, a novel approach to the protection of superconducting qubits has been proposed. The idea is to prevent errors at the hardware level, by building a fault-free logical qubit from ‘faulty’ physical qubits with properly engineered interactions between them. The decoupling of such a topologically protected logical qubit from local noises is expected to grow exponentially with the number of physical qubits. Here, we report on proof-of-concept experiments with a prototype device that consists of twelve physical qubits made of nanoscale Josephson junctions. We observed that owing to properly tuned quantum fluctuations, this qubit is protected against magnetic flux variations well beyond linear order, in agreement with theoretical predictions. These results suggest that topologically protected superconducting qubits are feasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Protected qubit based on ‘c o s(2φ)’ Josephson elements.
Figure 2: The prototype of a protected superconducting qubit.
Figure 3: Coherent transport of pairs of Cooper pairs.
Figure 4: Characteristic energies 2E2 and Δ2 for the devices with different values of EJ/EC.
Figure 5: Gate voltage dependence of the switching current.

Similar content being viewed by others

References

  1. Steane, A. M. Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68, 042322 (2003).

    Article  ADS  Google Scholar 

  2. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).

    Article  ADS  Google Scholar 

  3. Steffen, M. et al. Measurements of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. Yoshihara, F. et al. Decoherence of flux qubits due to 1/f flux noise. Phys. Rev. Lett. 97, 167001 (2006).

    Article  ADS  Google Scholar 

  5. Schreier, J. A. et al. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B 77, 180502(R) (2008).

    Article  ADS  Google Scholar 

  6. Ithier, G. et al. Decoherence in a superconducting quantum bit circuit. Phys. Rev. B 72, 134519 (2005).

    Article  ADS  Google Scholar 

  7. Faoro, L. & Ioffe, L. B. Quantum two level systems and Kondo-like traps as possible sources of decoherence in superconducting qubits. Phys. Rev. Lett. 96, 047001 (2006).

    Article  ADS  Google Scholar 

  8. Faoro, L. & Ioffe, L. B. Microscopic origin of critical current fluctuations in large, small, and ultra-small area Josephson junctions. Phys. Rev. B 75, 132505 (2007).

    Article  ADS  Google Scholar 

  9. Aharonov, D., Kitaev, A. & Preskill, J. Fault-tolerant quantum computing with long-range correlated noise. Phys. Rev. Lett. 96, 050504 (2006).

    Article  ADS  Google Scholar 

  10. Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inform. Comput. 6, 97–165 (2006).

    MathSciNet  MATH  Google Scholar 

  11. Oh, S. et al. Elimination of two level fluctuators in superconducting quantum bits by an epitaxial tunnel barrier. Phys. Rev. B 74, 100502(R) (2006).

    Article  ADS  Google Scholar 

  12. Martinis, J. M. et al. Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005).

    Article  ADS  Google Scholar 

  13. Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).

    Article  ADS  Google Scholar 

  14. Chioresku, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

    Article  ADS  Google Scholar 

  15. Pashkin, Yu. A. et al. Quantum oscillations in two coupled charge qubits. Nature 421, 823–826 (2003).

    Article  ADS  Google Scholar 

  16. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  ADS  Google Scholar 

  17. Kitaev, A.Yu. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  18. Ioffe, L. B. & Feigelman, M. V. Possible realization of an ideal quantum computer in Josephson junction array. Phys. Rev. B 66, 224503 (2002).

    Article  ADS  Google Scholar 

  19. Doucot, B., Feigelman, M. V. & Ioffe, L. B. Topological order in the insulating Josephson junction arrays. Phys. Rev. Lett. 90, 107003 (2003).

    Article  ADS  Google Scholar 

  20. Doucot, B., Feigelman, M. V., Ioffe, L. B. & Ioselevich, A. S. Protected qubits and Chern-Simons theories in Josephson junction arrays. Phys. Rev. B 71, 024505 (2005).

    Article  ADS  Google Scholar 

  21. Blatter, G., Geshkenbein, V. B. & Ioffe, L. B. Design aspects of superconducting-phase quantum bits. Phys. Rev. B 63, 174511 (2001).

    Article  ADS  Google Scholar 

  22. Doucot, B. & Vidal, J. Pairing of cooper pairs in a fully frustrated Josephson-junction chain. Phys. Rev. Lett. 88, 227005 (2002).

    Article  ADS  Google Scholar 

  23. Protopopov, I. V. & Feigelman, M. V. Anomalous periodicity of supercurrent in long frustrated Josephson-junction rhombi chains. Phys. Rev. B 70, 184519 (2004).

    Article  ADS  Google Scholar 

  24. Tinkham, M. Introduction to Superconductivity 2nd edn (Dover, 1996).

    Google Scholar 

  25. Doucot, B. & Ioffe, L. B. Voltage–current curves for small Josephson junction arrays: Semiclassical treatment. Phys. Rev. B 76, 214507 (2007).

    Article  ADS  Google Scholar 

  26. Pop, I. M. et al. Measurement of the current-phase relation in Josephson junction rhombi chains. Phys. Rev. B 78, 104504 (2008).

    Article  ADS  Google Scholar 

  27. Kitaev, A. Protected qubit based on a superconducting current mirror. Preprint at <http://arxiv.org/abs/cond-mat/0609441> (2006).

  28. Corlevi, S., Guichard, W., Hekking, F. & Haviland, D. B. Phase-charge duality of a Josephson junction in a fluctuating electromagnetic environment. Phys. Rev. Lett. 97, 096802 (2006).

    Article  ADS  Google Scholar 

  29. Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    Article  ADS  Google Scholar 

  30. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  31. Lichtenberger, A. W. et al. Fabrication of Nb/Al–Al2O3/Nb junctions with extremely low leakage currents. IEEE Trans. Magn. 25, 1247–1250 (1989).

    Article  ADS  Google Scholar 

  32. Lutchyn, R. M., Glazman, L. I. & Larkin, A. I. Kinetics of the superconducting charge qubit in the presence of a quasiparticle. Phys. Rev. B 74, 064515 (2006).

    Article  ADS  Google Scholar 

  33. Aumentado, J., Keller, M. W., Martinis, J. M. & Devoret, M. H. Nonequilibrium quasiparticles and 2e periodicity in single-Cooper-pair transistors. Phys. Rev. Lett. 92, 066802 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Sanchez and S. Pereverzev for help with experiments and O. Buisson, W. Guichard, L. Faoro, M. Feigelman, B. Pannetier and V. Schmidt for stimulating discussions. The work at Rutgers University was supported in part by the NSF grant ECS-0608842 and the Rutgers Academic Excellence Fund. The work at the University of Paris has been partly supported by the ANR grant ANR-06BLAN-0218-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Gershenson.

Supplementary information

Supplementary Information

Supplementary Informations (PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gladchenko, S., Olaya, D., Dupont-Ferrier, E. et al. Superconducting nanocircuits for topologically protected qubits. Nature Phys 5, 48–53 (2009). https://doi.org/10.1038/nphys1151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys1151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing