Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanomagnonic devices based on the spin-transfer torque

Subjects

Abstract

Magnonics1,2,3 is based on signal transmission and processing by spin waves (or their quanta, called magnons) propagating in a magnetic medium. In the same way as nanoplasmonics makes use of metallic nanostructures to confine and guide optical-frequency plasmon-polaritons4,5, nanomagnonics uses nanoscale magnetic waveguides to control the propagation of spin waves6. Recent advances in the physics of nanomagnetism, such as the discovery of spin-transfer torque7,8, have created possibilities for nanomagnonics. In particular, it was recently demonstrated that nanocontact spin-torque devices can radiate spin waves9,10,11, serving as local nanoscale sources of signals for magnonic applications12. However, the integration of spin-torque sources with nanoscale magnetic waveguides, which is necessary for the implementation of integrated spin-torque magnonic circuits, has not been achieved to date. Here, we suggest and experimentally demonstrate a new approach to this integration, utilizing dipolar field-induced magnonic nanowaveguides. The waveguides exhibit good spectral matching with spin-torque nano-oscillators and enable efficient directional transmission of spin waves. Our results provide a practical route for the implementation of integrated magnonic circuits utilizing spin transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the experiment and electronic characterization of STNOs.
Figure 2: BLS characterization of the magnetization dynamics in the nanowaveguide and the free Py film.
Figure 3: Spatially resolved BLS measurements of spin-wave propagation in the nanowaveguide.
Figure 4: Results of micromagnetic simulations of spin-wave propagation in the field-induced magnonic nanowaveguide.

Similar content being viewed by others

References

  1. Neusser, S. & Grundler, D. Magnonics: spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009).

    Article  CAS  Google Scholar 

  2. Kruglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Article  Google Scholar 

  3. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Article  Google Scholar 

  4. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  5. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    Article  CAS  Google Scholar 

  6. Demidov, V. E., Demokritov, S. O., Rott, K., Krzysteczko, P. & Reiss, G. Nano-optics with spin waves at microwave frequencies. Appl. Phys. Lett. 92, 232503 (2008).

    Article  Google Scholar 

  7. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  8. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  9. Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators. Nature Mater. 9, 984–988 (2010).

    Article  CAS  Google Scholar 

  10. Madami, M. et al. Direct observation of a propagating spin wave induced by spin-transfer torque. Nature Nanotech. 6, 635–638 (2011).

    Article  CAS  Google Scholar 

  11. Demidov, V. E., Urazhdin, S., Tiberkevich, V., Slavin, A. & Demokritov, S. O. Control of spin-wave emission from spin-torque nano-oscillators by microwave pumping. Phys. Rev. B 83, 060406(R) (2011).

    Article  Google Scholar 

  12. Ulrichs, H., Demidov, V. E., Demokritov, S. O. & Urazhdin, S. Spin-torque nano-emitters for magnonic applications. Appl. Phys. Lett. 100, 162406 (2012).

    Article  Google Scholar 

  13. Vlaminck, V. & Bailleul, M. Current-induced spin-wave Doppler shift. Science 322, 410–413 (2008).

    Article  CAS  Google Scholar 

  14. Lee, K. S., Han, D. S. & Kim, S. K. Physical origin and generic control of magnonic band gaps of dipole-exchange spin waves in width-modulated nanostrip waveguides. Phys. Rev. Lett. 102, 127202 (2009).

    Article  Google Scholar 

  15. Demidov, V. E. et al. Transformation of propagating spin-wave modes in microscopic waveguides with variable width. Phys. Rev. B 79, 054417 (2009).

    Article  Google Scholar 

  16. Chumak, A. V. et al. Spin-wave propagation in a microstructured magnonic crystal. Appl. Phys. Lett. 95, 262508 (2009).

    Article  Google Scholar 

  17. Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Control of spin-wave phase and wavelength by electric current on the microscopic scale. Appl. Phys. Lett. 95, 262509 (2009).

    Article  Google Scholar 

  18. Vogt, K. et al. Spin waves turning a corner. Appl. Phys. Lett. 101, 042410 (2012).

    Article  Google Scholar 

  19. Demidov, V. E. et al. Excitation of short-wavelength spin waves in magnonic waveguides. Appl. Phys. Lett. 99, 082507 (2011).

    Article  Google Scholar 

  20. Slavin, A. & Tiberkevich, V. Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005).

    Article  Google Scholar 

  21. Berkov, D. V., Boone, C. T. & Krivorotov, I. N. Micromagnetic simulations of magnetization dynamics in a nanowire induced by a spin-polarized current injected via a point contact. Phys. Rev. B 83, 054420 (2011).

    Article  Google Scholar 

  22. Consolo, G. et al. Excitation of spin waves by a current-driven magnetic nanocontact in a perpendicularly magnetized waveguide. Phys. Rev. B 88, 014417 (2013).

    Article  Google Scholar 

  23. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003).

    Article  CAS  Google Scholar 

  24. Demokritov, S. O. & Demidov, V. E. Micro-Brillouin light scattering spectroscopy of magnetic nanostructures. IEEE Trans. Magn. 44, 6–12 (2008).

    Article  CAS  Google Scholar 

  25. Hansen, W. et al. Intersubband resonance in quasi one-dimensional inversion channels. Phys. Rev. Lett. 58, 2586 (1987).

    Article  CAS  Google Scholar 

  26. Kalinikos, B. A. Excitation of propagating spin waves in ferromagnetic films. IEE Proc. H 127, 4–10 (1980).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Deutsche Forschungsgemeinschaft, the US National Science Foundation and Megagrant programme no. 2013-220-04-329 of the Russian Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Contributions

S.U. suggested the idea for the experiment and fabricated the samples. V.E.D. and H.U. performed measurements and data analysis. T.Ke. and T.Ku. performed micromagnetic simulations. J.L. and G.W. performed sample characterization. S.O.D. formulated the experimental approach and performed the general supervision of the study. All authors co-wrote the manuscript.

Corresponding author

Correspondence to V. E. Demidov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Information (PDF 406 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urazhdin, S., Demidov, V., Ulrichs, H. et al. Nanomagnonic devices based on the spin-transfer torque. Nature Nanotech 9, 509–513 (2014). https://doi.org/10.1038/nnano.2014.88

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2014.88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing