Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy

Abstract

Heterogeneous catalysts have been pivotal to the development of the modern chemical industry and are essential for catalysing many industrial reactions. However, reaction rates are different for every individual catalyst particle and depend upon each particle's morphology and size1, crystal structure2 and composition3,4,5,6,7. Measuring the rates of reaction on single nanocrystals will enable the role of catalyst structure to be quantified. Here, using surface plasmon spectroscopy, we have directly observed the kinetics of atomic deposition onto a single gold nanocrystal and also monitored electron injection and extraction during a redox reaction involving the oxidation of ascorbic acid on a gold nanocrystal surface. These results constitute the first direct measurement of the rates of redox catalysis on single nanocrystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DFM images of gold nanocrystals of different shapes.
Figure 2: Gold-catalysed oxidation of ascorbic acid.
Figure 3: Growth of a single gold nanorod.

Similar content being viewed by others

References

  1. Li, Y. & El-Sayed, M. A. The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J. Phys. Chem. B 105, 8938–8943 (2001).

    Article  CAS  Google Scholar 

  2. Meisel, D., Mulac, W. & Matheson, M. Catalysis of methyl viologen radical reactions by polymer-stabilized gold sols. J. Phys. Chem. 85, 179–187 (1981).

    Article  CAS  Google Scholar 

  3. Narayanan, R. & El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 4, 1343–1348 (2004).

    Article  CAS  Google Scholar 

  4. Rupprechter, G. & Weilach, C. Mind the gap! Spectroscopy of catalytically active phases. Nano Today 2, 20–29 (2007).

    Article  Google Scholar 

  5. Park, I., Lee, K., Choi, J., Park, H. & Sung, Y. Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation. J. Phys. Chem. C 111, 19126–19133 (2007).

    Article  CAS  Google Scholar 

  6. Chen, X. & Moskovits, M. Observing catalysis through the agency of the participating electrons: surface-chemistry-induced current changes in a tin oxide nanowire decorated with silver. Nano Lett. 7, 807–812 (2007).

    Article  CAS  Google Scholar 

  7. Fierro-Gonzalez, J. & Gates, B. Evidence of active species in CO oxidation catalyzed by highly dispersed supported gold. Catal. Today 122, 201–210 (2007).

    Article  CAS  Google Scholar 

  8. Somorjai, G., York, R., Butcher, D. & Park, J. The evolution of model catalytic systems: studies of structure, bonding and dynamics from single-crystal metal surfaces to nanoparticles, and from low pressure (<10−3 Torr) to high pressure (>10−3 Torr) to liquid interfaces. Phys. Chem. Chem. Phys. 9, 3500–3513 (2007).

    Article  CAS  Google Scholar 

  9. Novo, C. et al. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Phys. Chem. Chem. Phys. 8, 3540–3546 (2006).

    Article  CAS  Google Scholar 

  10. Novo, C., Funston, A. M., Pastoriza-Santos, I., Liz-Marzán, L. & Mulvaney, P. Spectroscopy and high-resolution microscopy of single nanocrystals by a focused ion beam registration method. Angew. Chem. Int. Ed. 46, 3517–3520 (2007).

    Article  CAS  Google Scholar 

  11. Henglein, A. Physicochemical properties of small metal particles in solution—microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457–5471 (1993).

    Article  CAS  Google Scholar 

  12. Bard, A., Crayston, J., Kittlesen, G., Shea, T. & Wrighton, M. Digital simulation of the measured electrochemical response of reversible redox couples at microelectrode arrays—consequences arising from closely spaced ultramicroelectrodes. Anal. Chem. 58, 2321–2331 (1986).

    Article  CAS  Google Scholar 

  13. Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788–800 (1996).

    Article  CAS  Google Scholar 

  14. Bockris, J., Damjanov, A. & Mannan, R. Catalysis of electrodic hydrogen evolution and dissolution reactions on rationally chosen substrates. J. Electroanal. Chem. 18, 349–361 (1968).

    Article  CAS  Google Scholar 

  15. Spiro, M. & Freund, P. Colloidal catalysis—transport versus surface control. J. Chem. Soc., Faraday Trans. I 79, 1649–1658 (1983).

    Article  CAS  Google Scholar 

  16. Spiro, M. Heterogeneous catalysis in solution. 17. Kinetics of oxidation–reduction reactions catalyzed by electron-transfer through the solid—an electrochemical treatment. J. Chem. Soc., Faraday Trans. I 75, 1507–1512 (1979).

    Article  CAS  Google Scholar 

  17. Henglein, A. & Lilie, J. Storage of electrons in aqueous solution—the rates of chemical charging and discharging the colloidal silver microelectrode. J. Am. Chem. Soc. 103, 1059–1066 (1981).

    Article  CAS  Google Scholar 

  18. Miller, D., Bard, A., McLendon, G. & Ferguson, J. Catalytic water reduction at colloidal metal microelectrodes. 2. Theory and experiment. J. Am. Chem. Soc. 103, 5336–5341 (1981).

    Article  CAS  Google Scholar 

  19. Kiwi, J. & Gratzel, M. Hydrogen evolution from water induced by visible light mediated by redox catalysis. Nature 281, 657–658 (1979).

    Article  CAS  Google Scholar 

  20. Mulvaney, P., Perez-Juste, J., Giersig, M., Liz-Marzán, L. & Pecharroman, C. Drastic surface plasmon mode shifts in gold nanorods due to electron charging. Plasmonics 1, 61–66 (2006).

    Article  CAS  Google Scholar 

  21. Novo, C. & Mulvaney, P. Charge-induced Rayleigh instabilities in small gold rods. Nano Lett. 7, 520–524 (2007).

    Article  CAS  Google Scholar 

  22. Mulvaney, P., Linnert, T. & Henglein, A. Surface chemistry of colloidal silver in aqueous solution—observations on chemisorption and reactivity. J. Phys. Chem. 95, 7843–7846 (1991).

    Article  CAS  Google Scholar 

  23. Liz-Marzán, L. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22, 32–41 (2006).

    Article  Google Scholar 

  24. Nikoobakht, B. & El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    Article  CAS  Google Scholar 

  25. Perez-Juste, J., Liz-Marzán, L., Carnie, S., Chan, D. & Mulvaney, P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv. Funct. Mater. 14, 571–579 (2004).

    Article  CAS  Google Scholar 

  26. Jana, N., Gearheart, L. & Murphy, C. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun. 617–618 (2001).

  27. Prescott, S. & Mulvaney, P. Gold nanorod extinction spectra. J. Appl. Phys. 99,123504-1 (2006).

    Article  Google Scholar 

  28. Sánchez-Iglesias, A. et al. Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater. 18, 2529–2534 (2006).

    Article  Google Scholar 

  29. Gesquiere, A., Park, S. & Barbara, P. F-V/SMS: a new technique for studying the structure and dynamics of single molecules and nanoparticles. J. Phys. Chem. B 108, 10301–10308 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.N. thanks the University of Melbourne for MIRS and MIFRS postgraduate scholarships and P.M. thanks the ARC for support through FF 0561456. We acknowledge I. Pastoriza-Santos for the gold pentagon samples.

Author information

Authors and Affiliations

Authors

Contributions

C.N. performed the experiments and analysed the data together with P.M. and A.M.F. A.M.F. provided help with the optics. All authors discussed the results and co-wrote the manuscript.

Corresponding author

Correspondence to Paul Mulvaney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novo, C., Funston, A. & Mulvaney, P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nature Nanotech 3, 598–602 (2008). https://doi.org/10.1038/nnano.2008.246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2008.246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing