Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial manipulation of nanoacoustic waves with nanoscale spot sizes

Abstract

Coherent acoustic phonons are generated at terahertz frequencies when semiconductor quantum-well nanostructures are illuminated by femtosecond laser pulses1,2,3,4,5,6,7,8,9. These phonons—also known as nanoacoustic waves—typically have wavelengths of tens of nanometres, which could prove useful in applications such as non-invasive ultrasonic imaging10,11,12 and sound amplification by the stimulated emission of radiation13. However, optical diffraction effects mean that the nanoacoustic waves are produced with spot sizes on the micrometre scale. Near-field optical techniques can produce waves with smaller spot sizes, but they only work near surfaces14. Here, we show that a far-field optical technique—which suffers no such restrictions—can be used to spatially manipulate the phonon generation process so that nanoacoustic waves are emitted with lateral dimensions that are much smaller than the laser wavelength. We demonstrate that nanoacoustic waves with wavelengths and spot sizes of the order of 10 nm and 100 nm, respectively, can be generated and detected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coherent acoustic phonon generation in piezoelectric semiconductor nanostructures.
Figure 2: Spatial manipulation of coherent acoustic phonon generation.
Figure 3: Experimental demonstration of spatially manipulated coherent phonon generation.

Similar content being viewed by others

References

  1. Yamamoto, A., Mishina, T., Masumoto, Y. & Nakayama, M. Coherent oscillation of zone-folded phonon modes in GaAs/AlAs superlattices. Phys. Rev. Lett. 73, 740–743 (1994).

    Article  CAS  Google Scholar 

  2. Bartels, A., Dekorsy, T., Kurz, K. & Kohler, K. Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection. Phys. Rev. Lett. 82, 1044–1047 (1999).

    Article  CAS  Google Scholar 

  3. Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light-pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article  CAS  Google Scholar 

  4. Sun, C.-K., Liang, J.-C. & Yu, X.-Y. Coherent acoustic phonon oscillations in semiconductor multiple quantum wells with piezoelectric fields. Phys. Rev. Lett. 84, 179–182 (2000).

    Article  CAS  Google Scholar 

  5. Trigo, M., Bruchhausen, A., Fainstein, A., Jusserand, B. & Thierry-Mieg, V. Confinement of acoustical vibrations in a semiconductor planar phonon cavity. Phys. Rev. Lett. 89, 227402 (2002).

    Article  CAS  Google Scholar 

  6. Matsuda, O., Wright, O. B., Hurley, D. H., Gusev, V. E. & Shimizu, K. Coherent shear phonon generation and detection with ultrashort optical pulses. Phys. Rev. Lett. 93, 095501 (2004).

    Article  CAS  Google Scholar 

  7. Bargheer, M. et al. Coherent atomic motions in a nanostructure studied by femtosecond X-ray diffraction. Science 306, 1771 (2004).

    Article  CAS  Google Scholar 

  8. Lin, K.-H. et al. Optical piezoelectric transducer for nano-ultrasonics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 1404–1414 (2005).

    Article  Google Scholar 

  9. Lanzillotti-Kimura, N. D., Fainstein, A., Lemaitre, A. & Jusserand, B. Nanowave devices for terahertz acoustic phonons. Appl. Phys. Lett. 88, 083113 (2006).

    Article  Google Scholar 

  10. Tas, G., Loomis, J. J., Maris, H. J., Bailes, A. A. & Seiberling L. E. Picosecond ultrasonics study of the modification of interfacial bonding by ion implantation. Appl. Phys. Lett. 72, 2235 (1998).

    Article  CAS  Google Scholar 

  11. Andriamonje, G. et al. Scanning laser ultrasonics experiments for in situ nondestructive analysis of integrated circuits. IEEE Trans. Device Mater. Reliab. 5, 564 (2005).

    Article  Google Scholar 

  12. Lin, K.-H. et al. Two-dimensional nanoultrasonic imaging by using acoustic nanowaves. Appl. Phys. Lett. 89, 043106 (2006).

    Article  Google Scholar 

  13. Kent, A. J. et al. Acoustic phonon emission from a weakly coupled superlattice under vertical electron transport: observation of phonon resonance. Phys. Rev. Lett. 96, 215504 (2006).

    Article  CAS  Google Scholar 

  14. Vertikov, A., Kuball, M., Nurmikko, A. V. & Maris, H. J. Time-resolved pump-probe experiments with subwavelength lateral resolution. Appl. Phys. Lett. 69, 2465–2467 (1996).

    Article  CAS  Google Scholar 

  15. Yu, C.-T. et al. Generation of frequency-tunable nanoacoustic waves by optical coherent control. Appl. Phys. Lett. 87, 093114 (2005).

    Article  Google Scholar 

  16. Sanders, G. D., Stanton, C. J. & Kim, C. S. Theory of coherent acoustic phonons in InxGa1−xN/GaN multiple quantum wells. Phys. Rev. B 64, 235316 (2001).

    Article  Google Scholar 

  17. Sanders, G. D., Stanton, C. J. & Kim, C. S. Erratum: Theory of coherent acoustic phonons in InxGa1−xN/GaN multiple quantum wells. Phys. Rev. B 66, p079903(E) (2002).

  18. Chern, G.-W., Lin, K.-H. & Sun, C.-K. Transmission of light through quantum heterostructures modulated by coherent acoustic phonons. J. Appl. Phys. 95, 1114–1121 (2004).

    Article  CAS  Google Scholar 

  19. Chern, G.-W., Sun, C.-K., Sanders, G. D. & Stanton, C. J. Generation of coherent acoustic phonons in nitride-based semiconductor nanostructures. Top. Appl. Phys. 92, 339–394 (2004).

    Article  CAS  Google Scholar 

  20. Lin, K.-H., Yu, C.-T., Wen, Y.-C. & Sun, C.-K. Generation of picosecond acoustic pulses using a p-n junction with piezoelectric effects. Appl. Phys. Lett. 86, 093110 (2005).

    Article  Google Scholar 

  21. Klar, T. A., Engel, E. & Hell, S. W. Breaking Abbé's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys. Rev. E 64, 066613 (2001).

    Article  CAS  Google Scholar 

  22. Sun, C.-K. et al. Coherent optical control of acoustic phonon oscillations in InGaN/GaN multiple-quantum-wells. Appl. Phys. Lett. 78, 1201–1203 (2001).

    Article  CAS  Google Scholar 

  23. Chern, G.-W., Lin, K.-H., Huang, Y.-K. & Sun, C.-K. Spectral analysis of high-harmonic coherent acoustic phonons in piezoelectric semiconductor multiple quantum wells. Phys. Rev. B 67, 121303 (R) (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yuen-Lin Tsai and Wen-Pin Huang for processing the sample. This work was sponsored by the National Science Council of Taiwan under Grant No. 95-2120-M-002-013.

Author information

Authors and Affiliations

Authors

Contributions

C.-K.S. conceived and conducted the studies. K.-H.L. designed the experiments. K.-H.L. and C.-M.L. performed the simulation. K.-H.L., S.-Z.S. and C.-F.C. performed the experiments. K.-H.L. and C.-K.S. analysed the data. C.-C.P., J.-I.C. and J.-W.S. contributed the samples. K.-H.L. and C.-K.S. wrote the paper.

Corresponding author

Correspondence to Chi-Kuang Sun.

Supplementary information

Supplementary Information

Supplementary calculation and simulation (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, KH., Lai, CM., Pan, CC. et al. Spatial manipulation of nanoacoustic waves with nanoscale spot sizes. Nature Nanotech 2, 704–708 (2007). https://doi.org/10.1038/nnano.2007.319

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2007.319

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing