Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli

Abstract

Information processing in the brain may rely on temporal correlations in spike activity between neurons. Within the olfactory bulb, correlated spiking in output mitral cells could affect the odor code by either binding or amplifying signals from individual odorant receptors. We examined the timing of spike trains in mitral cells of rat olfactory bulb slices. Depolarization of mitral cell pairs elicited spikes that were correlated on a rapid timescale (≤10 ms) for cells whose primary dendrites projected to the same glomerulus. Correlated spiking was driven by a novel mechanism that depended on electrical coupling at mitral cell primary dendrites; the specific synchronizing signal was a coupled depolarization (20 ms) that was mediated by dendritic AMPA autoreceptors. We suggest that glomerulus-specific correlated spiking in mitral cells helps to preserve the fidelity of odor signals that are delivered to the olfactory cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlated spiking in glomerulus-specific mitral cells.
Figure 4: Correlated spiking is driven by the AMPA receptor–mediated DAMPA.
Figure 2: Mitral cells display glomerulus-specific electrical coupling.
Figure 3: Subthreshold responses in mitral cells are dominated by an AMPA receptor–mediated potential DAMPA.
Figure 5: Correlated spiking is due to electrical coupling of AMPA autoreceptor–mediated potentials.
Figure 6: Simulations of a two-mitral cell network model that incorporates AMPA autoreceptors and gap junctions.
Figure 7: Impact of local circuit inhibition on correlated spiking during NMDA-evoked responses.

Similar content being viewed by others

References

  1. Mori, K., Nagao, H. & Yoshihara, Y. The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999).

    Article  CAS  Google Scholar 

  2. Bozza, T.C. & Mombaerts, P. Olfactory coding: revealing intrinsic representations of odors. Curr. Biol. 11, R687–R690 (2001).

    Article  CAS  Google Scholar 

  3. Carr, C.E. Processing of temporal information in the brain. Annu. Rev. Neurosci. 16, 223–243 (1993).

    Article  CAS  Google Scholar 

  4. Meister, M., Lagnado, L., & Baylor, D.A. Concerted signaling by retinal ganglion cells. Science 270, 1207–1210 (1995).

    Article  CAS  Google Scholar 

  5. Laurent, G. et al. Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu. Rev. Neurosci. 24, 263–297 (2001).

    Article  CAS  Google Scholar 

  6. Friedrich, R.W. & Stopfer, M. Recent dynamics in olfactory population coding. Curr. Opin. Neurobiol. 11, 468–474 (2001).

    Article  CAS  Google Scholar 

  7. Adrian, E.D. The electrical activity of the mammalian olfactory bulb. Electroencephalogr. Clin. Neurophysiol. 2, 377–388 (1950).

    Article  CAS  Google Scholar 

  8. Freeman, W.J. Measurement of oscillatory responses to electrical stimulation in olfactory bulb of cat. J. Neurophysiol. 35, 762–779 (1972).

    Article  CAS  Google Scholar 

  9. Kashiwadani, H., Sasaki, Y.F., Uchida, N. & Mori, K. Synchronized oscillatory discharges of mitral/tufted cells with different molecular receptive ranges in the rabbit olfactory bulb. J. Neurophysiol. 82, 1786–1792 (1999).

    Article  CAS  Google Scholar 

  10. Stopfer, M., Bhagavan, S., Smith, B.H. & Laurent, G. Impaired odor discrimination on desynchronization of odor-encoding neural assemblies. Nature 390, 70–74 (1997).

    Article  CAS  Google Scholar 

  11. Rall, W. & Shepherd, G.M. Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in the olfactory bulb. J. Neurophysiol. 31, 884–915 (1968).

    Article  CAS  Google Scholar 

  12. Desmaisons, D., Vincent, J.D. & Lledo, P.M. Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons. J. Neurosci. 19, 10727–10737 (1999).

    Article  CAS  Google Scholar 

  13. Nicoll, R.A. & Jahr, C.E. Self-excitation of olfactory bulb neurons. Nature 296, 441–444 (1982).

    Article  CAS  Google Scholar 

  14. Aroniadou-Anderjaska, V., Ennis, M. & Shipley, M.T. Dendrodendritic recurrent excitation in mitral cells of the rat olfactory bulb. J. Neurophysiol. 82, 489–494 (1999).

    Article  CAS  Google Scholar 

  15. Isaacson, J.S. Glutamate spillover mediates excitatory transmission in the rat olfactory bulb. Neuron 20, 377–384 (1999).

    Article  Google Scholar 

  16. Friedman, D. & Strowbridge, B.W. Functional role of NMDA autoreceptors in olfactory mitral cells. J. Neurophysiol. 84, 39–50 (2000).

    Article  CAS  Google Scholar 

  17. Salin, P.A., Lledo, P.M., Vincent, J.D. & Charpak, S. Dendritic glutamate autoreceptors modulate signal processing in rat mitral cells. J. Neurophysiol. 85, 1275–1282 (2001).

    Article  CAS  Google Scholar 

  18. Paternostro, M.A., Reyher, C.K.H. & Brunjes, P.C. Intracellular injections of Lucifer yellow into lightly fixed mitral cells reveal neuronal dye-coupling in the developing rat olfactory bulb. Dev. Brain Res. 84, 1–10 (1995).

    Article  CAS  Google Scholar 

  19. Miragall, F., Simburger, E. & Dermietzel, R. Mitral and tufted cells of the mouse olfactory bulb possess gap junctions and express connexin43 mRNA. Neurosci. Lett. 216, 199–202 (1996).

    Article  CAS  Google Scholar 

  20. Belluardo, N. et al. Expression of connexin36 in the adult and developing rat brain. Brain Res. 865, 121–138 (2000).

    Article  CAS  Google Scholar 

  21. Zhang, C. & Restrepo, D. Expression of connexin 45 in the olfactory system. Brain Res. 929, 37–47 (2002).

    Article  CAS  Google Scholar 

  22. Schoppa, N.E. & Westbrook, G.L. Glomerulus-specific synchronization of mitral cells in the olfactory bulb. Neuron 31, 639–651 (2001).

    Article  CAS  Google Scholar 

  23. Perez Velazquez, J.L. & Carlen, P.L. Gap junctions, synchrony and seizures. Trends Neurosci. 23, 68–74 (2000).

    Article  CAS  Google Scholar 

  24. Gibson, J.R., Beierlein, M. & Connors, B.W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).

    Article  CAS  Google Scholar 

  25. Venance, L. et al. Connexin expression in electrically coupled postnatal rat brain neurons. Proc. Natl. Acad. Sci. USA 97, 10260–10265 (2000).

    Article  CAS  Google Scholar 

  26. Veenstra, R.D. Size and selectivity of gap junction channels formed from different connexins. J. Bioenerg. Biomembr. 28, 327–337 (1996).

    Article  CAS  Google Scholar 

  27. Montague, A.A. & Greer, C.A. Differential distribution of ionotropic glutamate receptor subunits in the rat olfactory bulb. J. Comp. Neurol. 405, 233–246 (1999).

    Article  CAS  Google Scholar 

  28. Dildy-Mayfield, J.E., Eger, E.I. & Harris, R.A. Anesthetics produce subunit-selective actions on glutamate receptors. J. Pharmacol. Exp. Ther. 276, 1058–1065 (1996).

    CAS  PubMed  Google Scholar 

  29. Kirson, E.D., Yaari, Y. & Perouansky, M. Presynaptic and postsynaptic actions of halothane at glutamatergic synapses in the mouse hippocampus. Br. J. Pharmacol. 124, 1607–1614 (1998).

    Article  CAS  Google Scholar 

  30. Williams, S.R. & Stuart, G.J. Dependence of EPSP efficacy on synapse location in neocortical pyramidal neurons. Science 295, 1907–1910 (2002).

    Article  CAS  Google Scholar 

  31. Lei, H., Christensen, T.A. & Hildebrand, J.G. Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons. Nat. Neurosci. 5, 557–565 (2002).

    Article  CAS  Google Scholar 

  32. Carlson, G.C., Shipley, M.T. & Keller, A. Long-lasting depolarizations in mitral cells of the rat olfactory bulb. J. Neurosci. 20, 2011–2021 (2000).

    Article  CAS  Google Scholar 

  33. Tamás, G., Buhl, E.H., Lorincz, A. & Somogyi, P. Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons. Nat. Neurosci. 3, 366–371 (2000).

    Article  Google Scholar 

  34. Schmitz, D. et al. Axo-axonal coupling. A novel mechanism for ultrafast neuronal communication. Neuron 31, 831–840 (2001).

    Article  CAS  Google Scholar 

  35. Brivanlou, I.H., Warland, D.K. & Meister, M. Mechanisms of concerted firing among retinal ganglion cells. Neuron 20, 527–539 (1998).

    Article  CAS  Google Scholar 

  36. Teubner, B. et al. Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein. J. Membr. Biol. 176, 249–262 (2000).

    Article  CAS  Google Scholar 

  37. Srinivas, M. et al. Functional properties of channels formed by the neuronal gap junction protein connexin36. J. Neurosci. 19, 9848–9855 (1999).

    Article  CAS  Google Scholar 

  38. Urban, N.N. & Sakmann, B. Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells. J. Physiol. 542, 355–367 (2002).

    Article  CAS  Google Scholar 

  39. Didier, A. et al. A dendrodendritic reciprocal synapse provides a recurrent excitatory connection in the olfactory bulb. Proc. Natl. Acad. Sci. USA. 98, 6441–6446 (2001).

    Article  CAS  Google Scholar 

  40. Isaacson, J.S. & Strowbridge, B.W. Olfactory reciprocal synapses; dendritic signaling in the CNS. Neuron 20, 749–761 (1998).

    Article  CAS  Google Scholar 

  41. Schoppa, N.E., Kinzie, J.M., Sahara, Y., Segerson, T.P. & Westbrook, G.L. Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J. Neurosci. 18, 6790–6802 (1998).

    Article  CAS  Google Scholar 

  42. Schoppa, N.E. & Westbrook, G.L. Regulation of synaptic timing in the olfactory bulb by an A-type potassium current. Nat. Neurosci. 2, 1106–1113 (1999).

    Article  CAS  Google Scholar 

  43. Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).

    Article  CAS  Google Scholar 

  44. Zou, Z., Horowitz, L.F., Montmayeur, J.P., Snapper, S. & Buck, L.B. Genetic tracing reveals a stereotyped sensory map in the olfactory cortex. Nature 414, 173–179 (2001).

    Article  CAS  Google Scholar 

  45. MacLeod, K., Bäcker, A. & Laurent, G. Who reads temporal information contained across synchronized and oscillatory spike trains? Nature 395, 693–698 (1998).

    Article  CAS  Google Scholar 

  46. Usrey, W.M., Alonso, J.-M. & Reid, R.C. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J. Neurosci. 20, 5461–5467 (2000).

    Article  CAS  Google Scholar 

  47. Shadlen, M.N. & Movshon, J.A. Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 67–77, 111–125 (1999).

    Article  CAS  Google Scholar 

  48. Kay, L.M. & Laurent, G. Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nat. Neurosci. 2, 1003–1009 (1999).

    Article  CAS  Google Scholar 

  49. Hines, M.L. & Carnevale, N.T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

    Article  CAS  Google Scholar 

  50. Shen, G.Y., Chen, W.R., Midtgaard, J., Shepherd, G.M. & Hines, M.L. Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. J. Neurophysiol. 82, 3006–3020 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health grant NS26494 to G.L.W. We thank members of the Westbrook lab for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan E. Schoppa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoppa, N., Westbrook, G. AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli. Nat Neurosci 5, 1194–1202 (2002). https://doi.org/10.1038/nn953

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn953

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing