Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DARPP-32 and regulation of the ethanol sensitivity of NMDA receptors in the nucleus accumbens

Abstract

The medium spiny neurons of the nucleus accumbens receive both an excitatory glutamatergic input from forebrain and a dopaminergic input from the ventral tegmental area. This integration point may constitute a locus whereby the N-methyl-D-aspartate (NMDA)-subtype of glutamate receptors promotes drug reinforcement. Here we investigate how dopaminergic inputs alter the ethanol sensitivity of NMDA receptors in rats and mice and report that previous dopamine receptor-1 (D1) activation, culminating in dopamine and cAMP-regulated phosphoprotein-32 kD (DARPP-32) and NMDA receptor subunit-1 (NR1)-NMDA receptor phosphorylation, strongly decreases ethanol inhibition of NMDA responses. The regulation of ethanol sensitivity of NMDA receptors by D1 receptors was absent in DARPP-32 knockout mice. We propose that DARPP-32 mediated blunting of the response to ethanol subsequent to activation of ventral tegmental area dopaminergic neurons initiates molecular alterations that influence synaptic plasticity in this circuit, thereby promoting the development of ethanol reinforcement.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patch clamp analysis reveals D1 receptor modulation of the EtOH sensitivity of accumbal-medium spiny NMDA synaptic currents.
Figure 2: D1 receptors activate a protein kinase A–dependent process that regulates NMDA receptor sensitivity to ethanol in the nucleus accumbens.
Figure 3: Phosphorylation of DARPP-32 and NMDA receptors coincides with the time course of diminished ethanol sensitivity.
Figure 4: Ethanol directly increases DARPP-32 phosphorylation in nucleus accumbens.
Figure 5: Mice lacking DARPP-32 are insensitive to D1 receptor modulation of ethanol sensitivity of NMDA receptors.

Similar content being viewed by others

References

  1. Wise, R.A. Drug-activation of brain reward pathways. Drug Alcohol Depend. 51, 13–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Ungless, M.A., Whistler, J.L., Malenka, R.C. & Bonci, A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 587–587 (2001).

    Article  Google Scholar 

  3. Vorel, S.R., Liu, X., Hayes, R.J., Spector, J.A. & Gardner, E.L. Relapse to cocaine-seeking after hippocampal theta burst stimulation. Science 292, 1175–1178 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Nestler, E.J., Neurobiology. Total recall-the memory of addiction. Science 292, 2266–2267 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Woodward, J.J. Ethanol and NMDA receptor signalling. Crit. Rev. Neurobiol. 14, 68–89 (2000).

    Article  Google Scholar 

  6. Lovinger, D.M., White, G. & Weight, F.F. Ethanol inhibits NMDA-activated ion currents in hippocampal neurons. Science 243, 1721–1724 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Hoffman, P.L., Rabe, C.S., Moses, F. & Tabakoff, B. N-methyl-D-aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production. J. Neurochem. 52, 1937–1940 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Morrisett, R.A. & Swartzwelder, H.S. Attenuation of hippocampal long-term potentiation by ethanol: a patch clamp analysis of glutamatergic and GABAergic mechanisms. J. Neurosci. 13, 2264–2272 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thomas, M.P., Monaghan, D.T. & Morrisett, R.A. Evidence for a causative role of NMDA receptors in an in vitro model of alcohol withdrawal hyperexcitability. J. Pharmacol. Exp. Therap. 287, 87–97 (1998).

    CAS  Google Scholar 

  10. Thomas, M.P. & Morrisett, R.A. Dynamics of NMDAR-mediated neurotoxicity during chronic ethanol exposure and withdrawal. Neuropharmacology 39, 218–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Grant, K.A., Knisely, J.S., Tabakoff, B., Barrett, J.E. & Balster, R.L. Ethanol-like discriminative stimulus effects on non-competitive N-methyl-D-aspartate antagonists. Behav. Pharmacol. 2, 87–95 (1991).

    Article  PubMed  Google Scholar 

  12. Risinger, F.O., Freeman, P.A., Greengard, P. & Fienberg, A.A. Motivational effects of ethanol in DARPP-32 knock-out mice. J. Neurosci. 21, 340–348 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fienberg, A.A. et al. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281, 838–842 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Hemmings, J.H.C., Greengard, P., Tung, H.Y.L. & Cohen, P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 310, 503–505 (1984).

    Article  CAS  PubMed  Google Scholar 

  15. Snyder, G.L., Fienberg, A.A., Huganier, R.L. & Greengard, P.A. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulated dephosphorylation of the NMDA receptor. J. Neurosci. 18, 10297–10303 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fedorov, N.B. & Reymann, K.G. Simultaneous local pressure microejection of excitatory amino acids and field potential recording with single micropipette in the hippocampal slice. J. Neurosci. Meth. 50, 83–90 (1993).

    Article  CAS  Google Scholar 

  17. El-Ghundi, M. et al. Disruption of dopamine D1 receptor gene expression attenuates alcohol-seeking behavior. Eur. J. Pharmacol. 353, 149–158 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Gonzales, R.A. & Weiss, F. Suppression of ethanol-reinforced behavior by naltrexone is associated with attenuation of the ethanol-induced increase in dialysate dopamine levels in the nucleus accumbens. J. Neurosci. 18, 10663–10671 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brodie, M.S., Pesold, C. & Appel, S.B. Ethanol directly excites dopaminergic ventral tegmental reward neurons. Alcohol. Clin. Exp. Res. 23, 1848–1852 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Biala, G. & Kotlinska, J. Blockade of the acquisition of ethanol-induced conditioned place preference by N-methyl-D-asparate receptor antagonists. Alcohol Alcohol 34, 175–182 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Pennartz, C., Aneerun, R., Groenewegen, H. & Lopes da Silva, F . Synaptic plasticity in an in vitro slice preparation of the rat nucleus accumbens. Eur. J. Neurosci. 5, 107–117 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Kombian, S.B. & Malenka, R.C. Simultaneous LTP of non-NMDA- and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. Nature 368, 242–246 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Thomas, M.J., Malenka, R.C. & Bonci, A. Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci. 20, 5581–5586 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kalluri, H. & Ticku, M. Effect of ethanol on phosphorylation of the NMDAR2B subunit in mouse cortical neurons. Brain Res. Mol. Brain Res. 68, 159–168 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Anders, D., Blevins, T., Smothers, C. & Woodward, J.J. Reduced ethanol inhibition of N-methyl-D-aspartate receptors by deletion of the NR1 C0 domain or overexpression of α-actinin-2 proteins. J Biol. Chem. 275, 15019–15024 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Rajadhyalsha, A. et al. L-type Ca2+ channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons. J. Neurosci. 19, 6348–6359 (1999).

    Article  Google Scholar 

  27. Halpain, S., Girault, J.-A. & Greengard, P. Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343, 369–372 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Givens, B., Williams, J. & Gill, T. Septohippocampal pathway as a site for the memory-impairing effects of ethanol. Hippocampus 10, 111–121 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Snyder, G.L. et al. Phosphorylation of DARPP-32 and protein phosphatase inhibitor-1 in rat choroid plexus: regulation by factors other than dopamine. J. Neurosci. 12, 3071–3083 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hemmings, J.H.C. & Greengard, P. DARPP-32, a dopamine-and adenosine 3′:5′-monophosphate-regulated phosphoprotein: regional, tissue, and phylogenetic distribution. J. Neurosci. 6, 1469–1481 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by NIH R01AA11845 (R.A.M.) and the Integrative Neuroscience Initiative on Alcoholism (INIA, NIH U01AA13CR (R.E.M.)), the Texas Commission on Alcoholism and Drug Abuse (TCADA) and the Waggoner Center on Alcoholism and Addiction Research (WCAAR) (R.A.M.). Additional support was from NIH R01AA11852 (R.A.G.) and R01AA11836 (S.W.L.) and T32AA07471 (K.F-K.). The authors thank R.A. Harris and A. Hendricson for suggestions and discussion, P. Greengard and P. Ingrassia for DARPP-32 antibodies and DARPP-32 modified mice, and A. Miao and M. Jia for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Morrisett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldve, R., Zhang, T., Ferrani-Kile, K. et al. DARPP-32 and regulation of the ethanol sensitivity of NMDA receptors in the nucleus accumbens. Nat Neurosci 5, 641–648 (2002). https://doi.org/10.1038/nn877

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn877

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing