Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for inhibition in shaping the temporal flow of information in prefrontal cortex

Abstract

The prefrontal cortex is important in guiding or inhibiting future responses, which requires the temporal integration of events and which provides continuity to the thought process. No cellular mechanism has been proposed to explain how the mental representation of a response or idea is linked to the next. Using simultaneous recordings in monkeys, we revealed inhibitory interactions between neurons active at different time points relative to the cue presentation, delay interval and response period of a working memory task. These findings suggest an important role of inhibition in the cerebral cortex—controlling the timing of neuronal activities during cognitive operations and thereby shaping the temporal flow of information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibitory interaction between two neurons recorded from separate electrodes.
Figure 2: Inhibitory interactions between two neurons recorded from the same electrode.
Figure 3: Neurons showing inhibition were maximally active at different time intervals.
Figure 4: Inhibitory CCH changes among the entire population of neurons.
Figure 5: Peri-stimulus cross-correlation histogram (PSCCH).

Similar content being viewed by others

References

  1. Ben-Yishai, R., Bar-Or, R. L. & Sompolinsky, H. Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci. USA 92, 3844–3848 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Somers, D. C., Nelson, S. B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Troyer, T. W., Krukowski, A. E., Priebe, N. J. & Miller, K. D. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 18, 5908–5927 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ferster, D. & Miller, K. D. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23, 441–471 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. McLaughlin, D., Shapley, R., Shelley, M. & Wielaard, D. J. A neuronal network model of macaque primary visual cortex (V1): orientation selectivity and dynamics in the input layer 4Cα. Proc. Natl. Acad. Sci. USA 97, 8087–8092 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, Y., Fujita, I. & Murayama, Y. Neuronal mechanisms of selectivity for object features revealed by blocking inhibition in inferotemporal cortex. Nat. Neurosci. 3, 807–813 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Rao, S. G., Williams, G. V. & Goldman-Rakic, P. S. Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. J. Neurosci. 20, 485–494 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goldman-Rakic, P. S. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 11, 137–156 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Fuster, J. M. The prefrontal cortex and its relation to behavior. Prog. Brain. Res. 87, 201–211 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J. Neurophysiol. 63, 814–831 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. Neuronal activity related to saccadic eye movements in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 65, 1464–1483 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Fuster, J. M. Prefrontal cortex and the bridging of temporal gaps in the perception–action cycle. Ann. NY Acad. Sci. 608, 318–329; discussion 330–336 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Fuster, J. M. The prefrontal cortex, mediator of cross-temporal contingencies. Human Neurobiology 4, 169–179 (1985).

    CAS  PubMed  Google Scholar 

  15. Fuster, J. M., Bodner, M. & Kroger, J. K. Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347–351 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Perkel, D. H., Gerstein, G. L. & Moore, G. P. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7, 419–440 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fetz, E. E., Toyama, K. & Smith, W. in Cerebral Cortex, Volume 9 (ed. Peters, A.) 1–47 (Plenum, New York, 1991).

    Google Scholar 

  18. Reid, R. C. & Alonso, J. M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378, 281–284 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Aertsen, A. M., Gerstein, G. L., Habib, M. K. & Palm, G. Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J. Neurophysiol. 61, 900–917 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Constantinidis, C., Franowicz, M. N. & Goldman-Rakic, P. S. Coding specificity in cortical microcircuits: a multiple electrode analysis of primate prefrontal cortex. J. Neurosci. 21, 3646–3655 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nowak, L. G., Munk, M. H., Nelson, J. I., James, A. C. & Bullier, J. Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J. Neurophysiol. 74, 2379–2400 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Gibson, J. R., Beierlein, M. & Connors, B. W. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Beierlein, M., Gibson, J. R. & Connors, B. W. A network of electrically coupled interneurons drives synchronized inhibition in neocortex. Nat. Neurosci. 3, 904–910 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Vaadia, E. et al. Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 373, 515–518 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Riehle, A., Grun, S., Diesmann, M. & Aertsen, A. Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278, 1950–1953 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Oram, M. W., Hatsopoulos, N. G., Richmond, B. J. & Donoghue, J. P. Excess synchrony in motor cortical neurons provides redundant direction information with that from coarse temporal measures. J. Neurophysiol. 86, 1700–1716 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Elhanany, E. and White, E.L. Intrinsic circuitry: synapses involving the local axon collaterals of corticocortical projection neurons in the mouse primary somatosensory cortex. J. Comp. Neurol. 291, 43–54 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Melchitzky, D. S., Sesack, S. R., Pucak, M. L. & Lewis, D. A. Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex. J. Comp. Neurol. 390, 211–224 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Krimer, L. S. & Goldman-Rakic, P. S. Prefrontal microcircuits: membrane properties and excitatory input of local, medium, and wide arbor interneurons. J. Neurosci. 21, 3788–3796 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goldman-Rakic, P. S. Cellular basis of working memory. Neuron 14, 477–485 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Funahashi, S., Chafee, M. V. & Goldman-Rakic, P. S. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756 (1993).

    Article  CAS  PubMed  Google Scholar 

  32. Constantinidis, C., Franowicz, M. N. & Goldman-Rakic, P. S. The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat. Neurosci. 4, 311–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Dehaene, S. & Changeux, J. P. A hierarchical neuronal network for planning behavior. Proc. Natl. Acad. Sci. USA 94, 13293–13298 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Changeux, J. P. & Dehaene, S. Hierarchical neuronal modeling of cognitive functions: from synaptic transmission to the Tower of London. Int. J. Psychophysiol. 35, 179–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Amit, D. J. & Brunel, N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7, 237–252 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Lisman, J. E., Fellous, J. M. & Wang, X. J. A role for NMDA-receptor channels in working memory. Nat. Neurosci. 1, 273–275 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Camperi, M. & Wang, X. J. A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. J. Comput. Neurosci. 5, 383–405 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Compte, A., Brunel, N., Goldman-Rakic, P. S. & Wang, X. J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10, 910–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Guigon, E., Dorizzi, B., Burnod, Y. & Schultz, W. Neural correlates of learning in the prefrontal cortex of the monkey: a predictive model. Cereb. Cortex 5, 135–147 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Gao, W.-J., Krimer, L.S. and Goldman-Rakic, P.S. Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc. Natl. Acad. Sci. USA 98, 295–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Rao, S.G., Williams, G.V. & Goldman-Rakic, P.S. Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J. Neurophysiol. 81, 1903–1916 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Wilson, F.A.W., O'Scalaidhe, S.P. & Goldman-Rakic, P.S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank S. Rao and M. Franowicz, who participated in these experiments. This research was supported by NIH grant MH38546 to P.S.G.-R. and a McDonnell-Pew Program in Cognitive Neuroscience Award to C.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia S. Goldman-Rakic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Constantinidis, C., Williams, G. & Goldman-Rakic, P. A role for inhibition in shaping the temporal flow of information in prefrontal cortex. Nat Neurosci 5, 175–180 (2002). https://doi.org/10.1038/nn799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn799

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing