Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus

Abstract

Axon guidance cues contributing to the development of eye-specific visual projections to the lateral geniculate nucleus (LGN) have not previously been identified. Here we show that gradients of ephrin-As and their receptors (EphAs) direct retinal ganglion cell (RGC) axons from the two eyes into their stereotyped pattern of layers in the LGN. Overexpression of EphAs in ferret RGCs using in vivo electroporation induced axons from both eyes to misproject within the LGN. The effects of EphA overexpression were competition-dependent and restricted to the early postnatal period. These findings represent the first demonstration of eye-specific pathfinding mediated by axon guidance cues and, taken with other reports, indicate that ephrin-As can mediate several mapping functions within individual target structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Eye-specific development and ephrin-As in the ferret LGN.
Figure 2: EphAs in the postnatal ferret retina.
Figure 3: In vivo ganglion cell electroporation.
Figure 4: Effect of EphA overexpression on eye-specific targeting and comparison to activity blockade.
Figure 5: EphA overexpression causes ipsilateral eye axons to misproject into opposite eye territory.
Figure 6: Effects of EphA overexpression on targeting of individual retinogeniculate axons.
Figure 7: Ephrin-A expression in the ferret LGN is developmentally regulated.

Similar content being viewed by others

References

  1. Rakic, P. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261, 467–471 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Linden, D.C., Guillery, R.W. & Cucchiaro, J. The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development. J. Comp. Neurol. 203, 189–211 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Shatz, C.J. The prenatal development of the cat's retinogeniculate pathway. J. Neurosci. 3, 482–499 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sengpiel, F. & Kind, P.C. The role of activity in development of the visual system. Curr. Biol. 12, R818–R826 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Jones, E.G. The Thalamus-Revisited (Cambridge University Press, Cambridge, UK, 2005).

    Google Scholar 

  6. Thompson, I. & Holt, C. Effects of intraocular tetrodotoxin on the development of the retinocollicular pathway in the Syrian hamster. J. Comp. Neurol. 282, 371–388 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Adams, D.L. & Horton, J.C. Capricious expression of cortical columns in the primate brain. Nat. Neurosci. 6, 113–114 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Shatz, C.J. & Stryker, M.P. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242, 87–89 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Penn, A.A., Riquelme, P.A., Feller, M.B. & Shatz, C.J. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108–2112 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Chapman, B. Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus. Science 287, 2479–2482 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rossi, F.M. et al. Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc. Natl. Acad. Sci. USA 98, 6453–6458 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stellwagen, D. & Shatz, C.J. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33, 357–367 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Shatz, C.J. Competitive interactions between retinal ganglion cells during prenatal development. J. Neurobiol. 21, 197–211 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Sanes, J.R. & Yamagata, M. Formation of lamina-specific synaptic connections. Curr. Opin. Neurobiol. 9, 79–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Huberman, A.D. et al. Eye-specific retinogeniculate segregation independent of normal neuronal activity. Science 300, 994–998 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guillery, R.W., Polley, E.H. & Torrealba, F. The arrangement of axons according to fiber diameter in the optic tract of the cat. J. Neurosci. 2, 714–721 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walsh, C. & Guillery, R.W. Age-related fiber order in the optic tract of the ferret. J. Neurosci. 5, 3061–3069 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Crowley, J.C. & Katz, L.C. Development of ocular dominance columns in the absence of retinal input. Nat. Neurosci. 2, 1125–1130 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Crowley, J.C. & Katz, L.C. Early development of ocular dominance columns. Science 290, 1321–1324 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Huberman, A.D., Stellwagen, D. & Chapman, B. Decoupling eye-specific segregation from lamination in the lateral geniculate nucleus. J. Neurosci. 22, 9419–9429 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Williams, R.W., Hogan, D. & Garraghty, P.E. Target recognition and visual maps in the thalamus of achiasmatic dogs. Nature 367, 637–639 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Guillery, R.W. & Kaas, J.H. A study of normal and congenitally abnormal retinogeniculate projections in cats. J. Comp. Neurol. 143, 73–100 (1971).

    Article  CAS  PubMed  Google Scholar 

  23. Guillery, R.W., Scott, G.L., Cattanach, B.M. & Deol, M.S. Genetic mechanisms determining the central visual pathways of mice. Science 179, 1014–1016 (1973).

    Article  CAS  PubMed  Google Scholar 

  24. Cheng, H.J., Nakamoto, M., Bergemann, A.D. & Flanagan, J.G. Complementary gradients in expression and binding of ELF-1 and Mek4 in development of the topographic retinotectal projection map. Cell 82, 371–381 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Nakamoto, M. et al. Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86, 755–766 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Frisen, J. et al. Ephrin-A5 (AL-1/RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. Neuron 20, 235–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Feldheim, D.A. et al. Topographic guidance labels in a sensory projection to the forebrain. Neuron 21, 1303–1313 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Feldheim, D.A. et al. Genetic analysis of ephrin-A2 and ephrin-A5 shows their requirement in multiple aspects of retinocollicular mapping. Neuron 25, 563–574 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Feldheim, D.A. et al. Loss-of-function analysis of EphA receptors in retinotectal mapping. J. Neurosci. 24, 2542–2550 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Godement, P., Salaun, J. & Imbert, M. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J. Comp. Neurol. 230, 552–575 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Herrera, E. et al. Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Cell 114, 545–557 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Cucchiaro, J.B. Early development of the retinal line of decussation in normal and albino ferrets. J. Comp. Neurol. 312, 193–206 (1991).

    Article  CAS  PubMed  Google Scholar 

  34. Jeffery, G. Retinotopic order appears before ocular separation in developing visual pathways. Nature 313, 575–576 (1985).

    Article  CAS  PubMed  Google Scholar 

  35. Jeffery, G. Shifting retinal maps in the development of the lateral geniculate nucleus. Brain Res. Dev. Brain Res. 46, 187–196 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Chalupa, L.M. & Snider, C.J. Topographic specificity in the retinocollicular projection of the developing ferret: an anterograde tracing study. J. Comp. Neurol. 392, 35–47 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Johnson, J.K. & Casagrande, V.A. Prenatal development of axon outgrowth and connectivity in the ferret visual system. Vis. Neurosci. 10, 117–130 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Hahm, J.O., Cramer, K.S. & Sur, M. Pattern formation by retinal afferents in the ferret lateral geniculate nucleus: developmental segregation and the role of N-methyl-D-aspartate receptors. J. Comp. Neurol. 411, 327–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Sretavan, D.W. & Shatz, C.J. Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat's lateral geniculate nucleus. J. Neurosci. 6, 234–251 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Flanagan, J.G. et al. Alkaline phosphatase fusions of ligands or receptors as in situ probes for staining of cells, tissues, and embryos. Methods Enzymol. 327, 19–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Hayes, S.G., Murray, K.D. & Jones, E.G. Two epochs in the development of gamma-aminobutyric acidergic neurons in the ferret thalamus. J. Comp. Neurol. 463, 45–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Hornberger, M.R. et al. Modulation of EphA receptor function by coexpressed ephrinA ligands on retinal ganglion cell axons. Neuron 22, 731–742 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Brown, A. et al. Topographic mapping from the retina to the midbrain is controlled by relative but not absolute levels of EphA receptor signaling. Cell 102, 77–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Muir-Robinson, G., Hwang, B.J. & Feller, M.B. Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J. Neurosci. 22, 5259–5264 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sperry, R.W. Chemoaffinity in the orderly growth of nerve fibers and connections. Proc. Natl. Acad. Sci. USA 50, 703–710 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pfeiffenberger, C. et al. Ephrin-As and neural activity are required for eye-specific patterning during retinogeniculate mapping. Nat. Neurosci. 8, 1020–1025 (2005).

    Article  Google Scholar 

  47. Goldberg, J.L. et al. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron 33, 689–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Ming, G., Henley, J., Tessier-Lavigne, M., Song, H. & Poo, M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29, 441–452 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Kawasaki, H., Crowley, J.C., Livesey, F.J. & Katz, L.C. Molecular organization of the ferret thalamus. J. Neurosci. 24, 9962–9970 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meister, M., Wong, R.O., Baylor, D.A. & Shatz, C.J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Nguyen, R. Kumar, D. Van Der List and G. Woods for technical assistance, M. Greenberg for the gift of the EphA3 and EphA5 expression plasmids and Colin Akerman for permission to adapt his ferret visuotopic map diagram. This work was supported by the US National Eye Institute (NEI; EY11369 to B.C. and EY14689-01 to D.A.F.), the NEI Vision Science Training Fellowship (EY015387 to A.D.H.), NS39094 (E.G. Jones, University of California, Davis, provided support for K.D.M.) and NEI Core Grant (EY12576 to L.M. Chalupa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Chapman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Model for ephrin-A induced targeting of eye-specific retinogeniculate projections. (PDF 1559 kb)

Supplementary Fig. 2

Scatter plots of the correlation index (CI) as a function of the inter-cell distance for each of the cell pairs recorded at P3. (PDF 1567 kb)

Supplementary Fig. 3

Scatter plots of the correlation index (CI) as a function of the inter-cell distance for each of the cell pairs recorded at P5. (PDF 1532 kb)

Supplementary Fig. 4

Scatter plots of the correlation index (CI) as a function of the inter-cell distance for each of the cell pairs recorded at P7. (PDF 1273 kb)

Supplementary Table 1

The Correlation Index (CI) intercept A and the correlation length L, together with their 95% confidence limits for ganglion cells recorded at each postnatal age, in control and EphA5 overexpressing ferret retinas. (PDF 54 kb)

Supplementary Movie 1

Movie of multi-site extracellular recording of spontaneous retinal activity from a control P5 ferret retina, shown at 1 frame per second; scale: X axis=1 second; Y axis=140 microVolts. Waves of activity like that shown here periodically propagate across the RGC layer of the retina. (MOV 157 kb)

Supplementary Movie 2

Movie of multi-site extracellular recording of spontaneous retinal activity from an EphA5 electroporated P5 ferret retina (electroporation was carried out on P1), shown at 1 frame per second; scale: X axis=1 second; Y axis=140 microVolts. The waves seen in EphA5 overexpressing retinas were indistinguishable from those seen in control retinas. (MOV 157 kb)

Supplementary Methods (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huberman, A., Murray, K., Warland, D. et al. Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nat Neurosci 8, 1013–1021 (2005). https://doi.org/10.1038/nn1505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing