Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions

Abstract

The neural mechanism underlying simple perceptual decision-making in monkeys has been recently conceptualized as an integrative process in which sensory evidence supporting different response options accumulates gradually over time. For example, intraparietal neurons accumulate motion information in favor of a specific oculomotor choice over time. It is unclear, however, whether this mechanism generalizes to more complex decisions that are based on arbitrary stimulus-response associations. In a task requiring arbitrary association of visual stimuli (faces or places) with different actions (eye or hand-pointing movements), we found that activity of effector-specific regions in human posterior parietal cortex reflected the 'strength' of the sensory evidence in favor of the preferred response. These regions did not respond to sensory stimuli per se but integrated sensory evidence toward the decision outcome. We conclude that even arbitrary decisions can be mediated by sensory-motor mechanisms that are completely triggered by contextual stimulus-response associations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decision task.
Figure 2: Pointing- and saccade-selective regions in posterior parietal and frontal cortex.
Figure 3: aPRR.
Figure 4: pPRR.
Figure 5: pIPS region.
Figure 6: FRR, SMC and FEF.
Figure 7: Whole brain analysis: sensory evidence and effector selectivity.
Figure 8: Whole brain analysis: sensory evidence.

Similar content being viewed by others

References

  1. Tversky, A. & Kahneman, D. The framing of decisions and the psychology of choice. Science 211, 453–458 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Heekeren, H.R., Marrett, S. & Ungerleider, L.G. The neural systems that mediate human perceptual decision making. Nat. Rev. Neurosci. 9, 467–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Shadlen, M.N. & Newsome, W.T. Motion perception: seeing and deciding. Proc. Natl. Acad. Sci. USA 93, 628–633 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Finney, D.J. Probit Analysis (Cambridge University Press, London, 1971).

  6. McKee, S.P., Klein, S.A. & Teller, D.Y. Statistical properties of forced-choice psychometric functions: implications of probit analysis. Percept. Psychophys. 37, 286–298 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Astafiev, S.V. et al. Functional organization of human intraparietal and frontal cortex for attending, looking and pointing. J. Neurosci. 23, 4689–4699 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Connolly, J.D., Andersen, R.A. & Goodale, M.A. FMRI evidence for a 'parietal reach region' in the human brain. Exp. Brain Res. 153, 140–145 (2003).

    Article  PubMed  Google Scholar 

  9. Galletti, C., Fattori, P., Kutz, D. & Gamberini, M. Brain location and visual topography of cortical area V6A in the macaque monkey. Eur. J. Neurosci. 11, 575–582 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Snyder, L.H., Batista, A.P. & Andersen, R.A. Coding of intention in the posterior parietal cortex. Nature 386, 167–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Sereno, M.I., Pitzalis, S. & Martinez, A. Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294, 1350–1354 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Colby, C.L., Duhamel, J.R. & Goldberg, M.E. Visual, presaccadic and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Bruce, C.J. & Goldberg, M.E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Paus, T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34, 475–483 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Heekeren, H.R., Marrett, S., Bandettini, P.A. & Ungerleider, L.G. A general mechanism for perceptual decision-making in the human brain. Nature 431, 859–862 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Heekeren, H.R., Marrett, S., Ruff, D.A., Bandettini, P.A. & Ungerleider, L.G. Involvement of human left dorsolateral prefrontal cortex in perceptual decision making is independent of response modality. Proc. Natl. Acad. Sci. USA 103, 10023–10028 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shulman, G.L. et al. Common blood flow changes across visual tasks. II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Raichle, M.E. et al. Inaugural article: a default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 676–682 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McKiernan, K.A., Kaufman, J.N., Kucera-Thompson, J. & Binder, J.R. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. J. Cogn. Neurosci. 15, 394–408 (2003).

    Article  PubMed  Google Scholar 

  20. Weissman, D.H., Roberts, K.C., Visscher, K.M. & Woldorff, M.G. The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Toth, L.J. & Assad, J.A. Dynamic coding of behaviorally relevant stimuli in parietal cortex. Nature 415, 165–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Freedman, D.J. & Assad, J.A. Experience-dependent representation of visual categories in parietal cortex. Nature 443, 85–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Stoet, G. & Snyder, L.H. Single neurons in posterior parietal cortex of monkeys encode cognitive set. Neuron 42, 1003–1012 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Snyder, L.H., Batista, A.P. & Andersen, R.A. Intention-related activity in the posterior parietal cortex: a review. Vision Res. 40, 1433–1441 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Silver, M.A., Ress, D. & Heeger, D.J. Topographic maps of visual spatial attention in human parietal cortex. J. Neurophysiol. 94, 1358–1371 (2005).

    Article  PubMed  Google Scholar 

  26. Schluppeck, D., Glimcher, P. & Heeger, D.J. Topographic organization for delayed saccades in human posterior parietal cortex. J. Neurophysiol. 94, 1372–1384 (2005).

    Article  PubMed  Google Scholar 

  27. Jack, A.I. et al. Changing human visual field organization from early visual to extra-occipital cortex. PLoS ONE 2, e452 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cui, H. & Andersen, R.A. Posterior parietal cortex encodes autonomously selected motor plans. Neuron 56, 552–559 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Calton, J.L., Dickinson, A.R. & Snyder, L.H. Non-spatial, motor-specific activation in posterior parietal cortex. Nat. Neurosci. 5, 580–588 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Dickinson, A.R., Calton, J.L. & Snyder, L.H. Nonspatial saccade-specific activation in area LIP of monkey parietal cortex. J. Neurophysiol. 90, 2460–2464 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, J.-N. & Shadlen, M.N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 (1999).

    Article  PubMed  Google Scholar 

  32. Coles, M.G.H., Gratton, G., Bashore, T.R., Eriksen, C.W. & Donchin, E. A psychophysiological investigation of the continuous flow model of human information processing. J. Exp. Psychol. Hum. Percept. Perform. 11, 529–553 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Shadlen, M.N., Kiani, R., Hanks, T.D. & Churchland, A.K. Neurobiology of decision making: an intentional framework. in Better Than Conscious? Decision Making, the Human Mind, and Implications for Institutions (eds Engel, C, & Singer, W.) 71–101 (MIT Press, Cambridge, 2008).

    Chapter  Google Scholar 

  34. Wilson, M. Six views of embodied cognition. Psychon. Bull. Rev. 9, 625–636 (2002).

    Article  PubMed  Google Scholar 

  35. Rorie, A.E. & Newsome, W.T. A general mechanism for decision-making in the human brain? Trends Cogn. Sci. 9, 41–43 (2005).

    Article  PubMed  Google Scholar 

  36. Kelley, W.M. et al. Hemispheric specialization in human dorsal frontal cortex and medial temporal lobe for verbal and nonverbal memory encoding. Neuron 20, 927–936 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Corbetta, M. et al. A functional MRI study of preparatory signals for spatial location and objects. Neuropsychologia 43, 2041–2056 (2005).

    Article  PubMed  Google Scholar 

  38. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Boynton, G.M., Engel, S.A., Glover, G.H. & Heeger, D.J. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ollinger, J.M., Shulman, G.L. & Corbetta, M. Separating processes within a trial in event-related functional MRI I. The method. Neuroimage 13, 210–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Ollinger, J.M. & McAvoy, M.P. A homogeneity correction for post-hoc ANOVAs in fMRI. Neuroimage 11, S604 (2000).

    Article  Google Scholar 

  42. Van Essen, D.C.A. Population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28, 635–662 (2005).

    Article  PubMed  Google Scholar 

  43. Van Essen, D.C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res. 41, 1359–1378 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Lombardi for her assistance in data collection. We also thank C. Lewis and C. Sestieri for technical support on data analysis, and A. Snyder, M. McAvoy and E. Akbudak for software and hardware development. This work was supported by the EU FP6-MEXC-CT-2004-006783 project (Investigations in Brain Sciences Education Network), US National Institute of Mental Health grant R01MH71920-06 and US National Institutes of Health grant NS48013 to M.C., by Italian Ministry of University and Research grant PRIN 2005119851_004 to G.G., and by the 3rd Ph.D. Internationalization Program of the Italian Ministry of University and Research.

Author information

Authors and Affiliations

Authors

Contributions

A.T., G.G. and M.C. were involved in experimental design. A.T. was responsible for data acquisition and data analysis, and A.T., G.G., G.L.R. and M.C. were involved in data interpretation and writing the manuscript.

Corresponding author

Correspondence to Annalisa Tosoni.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Methods (PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tosoni, A., Galati, G., Romani, G. et al. Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nat Neurosci 11, 1446–1453 (2008). https://doi.org/10.1038/nn.2221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing