Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions

Abstract

Understanding how chemically derived processes control the construction and organization of matter across extended and multiple length scales is of growing interest in many areas of materials research. Here we review present equilibrium and non-equilibrium self-assembly approaches to the synthetic construction of discrete hybrid (inorganic–organic) nano-objects and higher-level nanostructured networks. We examine a range of synthetic modalities under equilibrium conditions that give rise to integrative self-assembly (supramolecular wrapping, nanoscale incarceration and nanostructure templating) or higher-order self-assembly (programmed/directed aggregation). We contrast these strategies with processes of transformative self-assembly that use self-organizing media, reaction–diffusion systems and coupled mesophases to produce higher-level hybrid structures under non-equilibrium conditions. Key elements of the constructional codes associated with these processes are identified with regard to existing theoretical knowledge, and presented as a heuristic guideline for the rational design of hybrid nano-objects and nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Present approaches to the construction and organization of discrete hybrid nano-objects under equilibrium conditions.
Figure 2: Transmission electron microscopy (TEM) images of hybrid nano-objects produced by integrative self-assembly.
Figure 3: Nanostructure templating of hybrid nano-objects.
Figure 4: Higher-order assembly of nanoscale hybrid objects.
Figure 5: Non-equilibrium spontaneous assembly of hybrid nanostructures.
Figure 6: | Structural morphogenesis of hybrid nano-objects into higher-order forms under non-equilibrium conditions.

Similar content being viewed by others

References

  1. Mann, S. Life as a nanoscale phenomenon. Angew. Chem. Int. Ed. 47, 5306–5320 (2008).

    CAS  Google Scholar 

  2. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O'Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    CAS  Google Scholar 

  3. Wang, X., Zhuang, J., Peng, O. & Li, Y. D. A general strategy for nanocrystal synthesis. Nature 437, 121–124 (2005).

    CAS  Google Scholar 

  4. Mirkin, C. A. & Niemeyer, C. M. Nanobiotechnology II (Wiley-VCH, 2007).

    Google Scholar 

  5. Katz, E. & Willner, I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew. Chem. Int. Ed. 43, 6042–6108 (2004).

    CAS  Google Scholar 

  6. Girard, C., Dujardin, E., Li, M. & Mann, S. Theoretical near-field optical properties of branched plasmonic nanoparticle networks. Phys. Rev. Letts. 97, 100801 (2006).

    Google Scholar 

  7. van Bommel, K. J. C., Friggeri, A. & Shinkai, S. Organic templates for the generation of inorganic materials. Angew. Chem. Int. Ed. 42, 980–999 (2003).

    CAS  Google Scholar 

  8. Yamashita, I. Biosupramolecules for nano-devices: biomineralization of nanoparticles and their applications. J. Mater. Chem. 18, 3813–3820 (2008).

    CAS  Google Scholar 

  9. Li, M., Viravaidya, C. & Mann, S. Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles. Small 3, 1477–1481 (2007).

    CAS  Google Scholar 

  10. Hennequin, B. et al. Biocompatible, aqueous near infrared fluorescent labels based on apoferritin-encapsulated PbS quantum dots. Adv. Mater. 20, 3592–3596 (2008).

    CAS  Google Scholar 

  11. Kramer, R. M., Li, C., Carter, D. C., Stone, M. O. & Naik, R. R. Engineered protein cages for nanomaterial synthesis. J. Am. Chem. Soc. 126, 13282–13286 (2004).

    CAS  Google Scholar 

  12. Okuda, M. et al. Self-organized inorganic nanoparticle arrays on protein lattices. Nano Lett. 5, 991–993 (2005).

    CAS  Google Scholar 

  13. Ueno, T. et al. Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angew. Chem. Int. Ed. 43, 2527–2530 (2004).

    CAS  Google Scholar 

  14. Warne, B., Kasyuich, O. I., Mayes, E. L., Wiggins, J. A. J. & Wong, K. K. W. Self assembled nanoparticulate Co: Pt for data storage applications. IEEE Trans. Magn. 36, 3009–3011 (2000).

    CAS  Google Scholar 

  15. Aniagyei, S. E., DuFort, C., Kao, C. C. & Dragnea, B. Self-assembly approaches to nanomaterial encapsulation in viral protein cages. J. Mater. Chem. 18, 3763–3774 (2008).

    CAS  Google Scholar 

  16. Douglas, T. & Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998).

    CAS  Google Scholar 

  17. Liu, C. et al. Magnetic viruses via nano-capsid templates. J. Magn. Magn. Mater. 302, 47–51 (2006).

    Google Scholar 

  18. Loo, L., Guenther, R. H., Lommel, S. A. & Franzen, S. Encapsidation of nanoparticles by red clover necrotic mosaic virus. J. Am. Chem. Soc. 129, 11111–11117 (2007).

    CAS  Google Scholar 

  19. Goicochea, N. L., De, M., Rotello, V. M., Mukhopadhyay, S. & Dragnea, B. Core-like particles of an enveloped animal virus can self-assemble efficiently on artificial templates. Nano Lett. 7, 2281–2290 (2007).

    CAS  Google Scholar 

  20. Chen, C. et al. Nanoparticle-templated assembly of viral protein cages. Nano Lett. 6, 611–615 (2006).

    CAS  Google Scholar 

  21. Lu, Y. et al. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature 398, 223–226 (1999).

    CAS  Google Scholar 

  22. Sadasivan, S., Fowler, C. E., Khushalani, D. & Mann, S. Nucleation of MCM-41 nanoparticles by internal reorganization of disordered and nematic-like silica-surfactant clusters. Angew. Chem. Int. Ed. 41, 2151–2153 (2002).

    CAS  Google Scholar 

  23. Perkin, K. K., Turner, J. J., Wooley, K. L. & Mann, S. Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell crosslinked polymer micelles and nanocages. Nano Lett. 5, 1457–1461 (2005).

    CAS  Google Scholar 

  24. Jung, J. H., Ono, Y. & Shinkai, S. Novel silica structures which are prepared by transcription of various superstructures formed in organogels. Langmuir 16, 1643–1649 (2000).

    CAS  Google Scholar 

  25. Jung, J. H., Ono, Y., Hanabusa, K. & Shinkai, S. Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibres comprised of chiral diaminocyclohexane derivatives. J. Am. Chem. Soc. 1 22, 5008–5009 (2000).

    Google Scholar 

  26. Tamaru, S., Takeuchi, M., Sano, M. & Shinkai, S. Sol-gel transcription of sugar-appended porphyrin assemblies into fibrous silica: unimolecular stacks versus helical bundles as templates. Angew. Chem. Int. Ed. 41, 853–856 (2002).

    CAS  Google Scholar 

  27. Meadows, P. J., Dujardin, E., Hall, S. R. & Mann, S. Template-directed synthesis of silica-coated J-aggregate nanotapes. Chem. Commun. 3688–3690 (2005).

  28. Ono, Y. et al. Preparation of novel hollow fibre silica using collagen fibres as a template. Chem. Lett. 28, 475–476 (1999).

    Google Scholar 

  29. Numata, M. et al. Beta-1,3-glucan polysaccharide can act as a one-dimensional host to create novel silica nanofibre structures. Chem. Commun. 4655–4657 (2005).

  30. Ichinose, I., Hashimoto, Y. & Kunitake, T. Wrapping of bio-macromolecules (dextran, amylopectin, and horse heart cytochrome c) with ultrathin silicate layer. Chem. Lett. 33, 656–657 (2004).

    CAS  Google Scholar 

  31. Patil, A. J., Muthusamy, E. & Mann, S. Synthesis and self-assembly of organoclay-wrapped biomolecules. Angew. Chem. Int. Ed. 43, 4928–4933 (2004).

    CAS  Google Scholar 

  32. Patil, A. J., Li, M., Dujardin, E. & Mann, S. Novel bioinorganic nanostructures based on mesolamellar intercalation or single molecule wrapping of DNA using organoclay building blocks. Nano Lett. 7, 2660–2665 (2007).

    CAS  Google Scholar 

  33. Kim, J. & Grate, J. W. Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett. 3, 1219–1222 (2003).

    CAS  Google Scholar 

  34. Bromley, K. M., Patil, A. J., Perriman, A. W., Stubbs, G. & Mann, S. Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. J. Mater. Chem. 18, 4796–4801 (2008).

    CAS  Google Scholar 

  35. Lemon, B. I. & Crooks, R. M. Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots. J. Am. Chem. Soc. 122, 12886–12887 (2000).

    CAS  Google Scholar 

  36. Manson, C. F. & Wooley, A. T. DNA-templated construction of copper nanowires. Nano Lett. 3, 359–363 (2003).

    Google Scholar 

  37. Behrens, S. et al. Nanoscale particle arrays induced by highly ordered protein assemblies. Adv. Mater. 14, 1621–1625 (2002).

    CAS  Google Scholar 

  38. Dujardin, E., Peet, C., Stubbs, G., Culver, J. N. & Mann, S. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett. 3, 413–417 (2003).

    CAS  Google Scholar 

  39. Tseng, R. J. et al. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles. Nature Nanotech. 1, 72–77 (2006).

    CAS  Google Scholar 

  40. Górzny, M. L., Walton, A. S., Wnek, M., Stockley, P. G. & Evans, S. D. Four-probe electrical characterization of Pt-coated TMV-based nanostructures. Nanotechnology 19, 165704 (2008).

    Google Scholar 

  41. Seddon, A. M., Patel, H. M., Burkett, S. L. & Mann, S. Chiral templating of silica-lipid lamellar mesophase with helical tubular architecture. Angew. Chem. Int. Ed. 41, 2988–2991 (2002).

    CAS  Google Scholar 

  42. Chappel, J. S. & Yager, P. Formation of mineral microstructures with a high aspect ratio from phospholipid bilayer tubules. J. Mater. Sci. Lett. 11, 633–636 (1992).

    Google Scholar 

  43. Yuwono, V. M. & Hartgerink, J. D. Peptide amphiphile nanofibres template and catalyse silica nanotube formation. Langmuir 23, 5033–5038 (2007).

    CAS  Google Scholar 

  44. Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibres. Science 294, 1684–1688 (2001).

    CAS  Google Scholar 

  45. Wang, H. et al. Cylindrical block co-micelles with spatially selective functionalization by nanoparticles. J. Am. Chem. Soc. 129, 12924–12925 (2007).

    CAS  Google Scholar 

  46. Wang, H. et al. Fabrication of continuous and segmented polymer/metal oxide nanowires using cylindrical micelles and block co-micelles as templates. Adv. Mater. 21, 1805–1808 (2009).

    CAS  Google Scholar 

  47. Sone, E. D., Zubarev, E. R. & Stupp, S. I. Semiconductor nanohelices templated by supramolecular ribbons. Angew. Chem. Int. Ed. 41, 1705–1709 (2002).

    CAS  Google Scholar 

  48. Sone, E. D., Zubarev, E. R. & Stupp, S. I. Supramolecular templating of single and double nanohelices of cadmium sulphide. Small 5, 694–697 (2005).

    Google Scholar 

  49. Perkin, K. K., Hirsch, A., Böttcher, C. & Mann, S. Nanoscale organization and patterning of cadmium sulphide quantum dots on structurally persistent dendro-calixarene micelles. Small 3, 2057–2060 (2007).

    CAS  Google Scholar 

  50. Yu, L. T., Banerjee, I. A., Shima, M., Rajan, K. & Matsui, H. Size-controlled Ni nanocrystal growth on peptide nanotubes and their magnetic properties. Adv. Mater. 16, 709–712 (2004).

    CAS  Google Scholar 

  51. Banerjee, I. A., Yu, L. T. & Matsui, H. Cu nanocrystal growth on peptide nanotubes by biomineralization: size control of Cu nanocrystals by tuning peptide conformation. Proc. Natl Acad. Sci. USA 100, 14678–14682 (2003).

    CAS  Google Scholar 

  52. Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    CAS  Google Scholar 

  53. Meegan, J. E. et al. Designed self-assembled beta-sheet peptide fibrils as templates for silica nanotubes. Adv. Funct. Mater. 14, 31–37 (2004).

    CAS  Google Scholar 

  54. Holmström, S. C. et al. Templating silica nanostructures on rationally designed self-assembled peptide fibres. Langmuir 24, 11778–11783 (2008).

    Google Scholar 

  55. Schnur, J. M. Lipid tubules: A paradigm for molecularly engineered structures. Science 262, 1669–1676 (1993).

    CAS  Google Scholar 

  56. Yan, X. H., Liu, G. J., Haeussler, M. & Tang, B. Z. Water-dispersible polymer/Pd/Ni hybrid magnetic nanofibres. Chem. Mater. 17, 6053–6059 (2005).

    CAS  Google Scholar 

  57. Duxin, N., Liu, F. T., Vali, H. & Eisenberg, A. Cadmium sulphide quantum dots in morphologically tunable triblock copolymer aggregates. J. Am. Chem. Soc. 127, 10063–10069 (2005).

    CAS  Google Scholar 

  58. Kellermann, M. et al. The first account of a structurally persistent micelle. Angew. Chem. Int. Ed. 43, 2959–2962 (2004).

    CAS  Google Scholar 

  59. Sadasivan, S., Dujardin, E., Li, M., Johnson, C. J. & Mann, S. DNA-driven assembly of mesoporous silica/gold satellite nanoparticles. Small 1, 103–106 (2005).

    CAS  Google Scholar 

  60. Mirkin, C. A., Letsinger, R. L., Mucic, R, C. & Storhoff, J. J. DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Google Scholar 

  61. Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 40, 4128–4158 (2001).

    CAS  Google Scholar 

  62. Li, M., Dujardin, E. & Mann, S. Programmed assembly of multi-layered protein/nanoparticle-carbon nanotube conjugates. Chem. Commun. 4952–4954 (2005).

  63. Ishii, D. et al. Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423, 628–632 (2003).

    CAS  Google Scholar 

  64. Scheibel, T. et al. Conducting nanowires built by controlled self-assembly of amyloid fibres and selective metal deposition. Proc. Natl Acad. Sci. USA 100, 4527–4532 (2003).

    CAS  Google Scholar 

  65. Medalsy, I et al. SP1 protein-based nanostructures and arrays. Nano Lett. 8, 473–477 (2008).

    CAS  Google Scholar 

  66. Gottlieb, D., Morin, S. A., Jin, S. & Raines, R. T. Self-assembled collagen-like peptide fibres as templates for metallic nanowires. J. Mater. Chem. 18, 3865–3870 (2008).

    CAS  Google Scholar 

  67. Wang, Q., Lin, T., Tang, L., Johnson, J. E. & Finn, M. G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Ed. 41, 459–462 (2002).

    CAS  Google Scholar 

  68. McMillan, R. A. et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Mater. 1, 247–252 (2002).

    CAS  Google Scholar 

  69. Patolsky, F., Weizmann, Y. & Willner, I. Actin-based metallic nanowires as bio-nanotransporters. Nature Mater. 3, 692–695 (2004).

    CAS  Google Scholar 

  70. Grybowski, B. A., Wilmer, C. E., Kim, J., Browne, K. P. & Bishop, K. J. M. Self-assembly: from crystals to cells. Soft Matter 5, 1110–1128 (2009).

    Google Scholar 

  71. Sun, J. et al. Core-controlled polymorphism in virus-like particles. Proc. Natl Acad. Sci. USA 104, 1354–1359 (2007).

    CAS  Google Scholar 

  72. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond lattice. Science 312, 420–424 (2006).

    CAS  Google Scholar 

  73. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    CAS  Google Scholar 

  74. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    CAS  Google Scholar 

  75. Tlusty, T. & Safran, S. A. Defect-induced phase separation in dipolar fluids. Science 290, 1328–1331 (2000).

    CAS  Google Scholar 

  76. Tang, Z. Y., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    CAS  Google Scholar 

  77. Lin, S., Li, M., Dujardin, E., Girard, C. & Mann, S. One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks. Adv. Mater. 17, 2553–2559 (2005).

    CAS  Google Scholar 

  78. DeVries, G. A. et al. Divalent metal nanoparticles. Science 315, 358–361 (2007).

    CAS  Google Scholar 

  79. Adams, M., Dogic, Z., Keller, S. L. & Fraden, S. Entropically driven microphase transitions in mixtures of colloidal rods and spheres. Nature 393, 349–352 (1998).

    CAS  Google Scholar 

  80. Nikoobakht, B., Wang, Z. L. & El-Sayed, M. A. Self-assembly of gold nanorods. J. Phys. Chem. B 104, 8635–8640 (2000).

    CAS  Google Scholar 

  81. Puntes, V. F., Krishnan, K. M. & Alivisatos, A. P. Colloidal nanocrystal shape and size control: the case of cobalt. Science 291, 2115–2117 (2001).

    CAS  Google Scholar 

  82. Li, M., Schnablegger, H. & Mann, S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393–395 (1999).

    CAS  Google Scholar 

  83. Nie, Z. et al. Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nature Mater. 6, 609–614 (2007).

    CAS  Google Scholar 

  84. Stankovich, S. et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006).

    CAS  Google Scholar 

  85. Patil, A. J., Vickery, J. L., Scott, T. B. & Mann, S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 21, 3159–3164 (2009).

    CAS  Google Scholar 

  86. Penn, R. L. & Banfield, J. F. Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim. Cosmochim. Acta 63, 1549–1557 (1999).

    CAS  Google Scholar 

  87. Coelfen, H. & Antonietti, M. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 44, 5576–5591 (2005).

    CAS  Google Scholar 

  88. Coelfen, H. & Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003).

    CAS  Google Scholar 

  89. Mann, S. The chemistry of form. Angew. Chem. Int. Ed. 39, 3392–3406 (2000).

    CAS  Google Scholar 

  90. Simon, P. et al. On the real-structure of biomimetically grown hexagonal prismatic seeds of fluorapatite-gelatine-composites: TEM investigations along [001]. J. Mater. Chem. 14, 2218–2224 (2004).

    CAS  Google Scholar 

  91. Yu, S.-H., Coelfen, H., Tauer, K. & Antonietti, M. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nature Mater. 4, 51–55 (2005).

    CAS  Google Scholar 

  92. Wang, T. X., Coelfen, H. & Antonietti, M. Nonclassical crystallization: mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. J. Am. Chem. Soc. 127, 3246–3247 (2005).

    CAS  Google Scholar 

  93. Busch, S. et al. Biomimetic morphogenesis of fluorapatite-gelatin composites: fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen. Eur. J. Inorg. Chem. 1643–1653 (1999).

    Google Scholar 

  94. Ball, P. The Self-Made Tapestry: Pattern Formation in Nature (Oxford Univ. Press, 1999).

    Google Scholar 

  95. Li, M. & Mann, S. Emergent hybrid nanostructures based on non-equilibrium block copolymer self-assembly. Angew. Chem. Int. Ed. 47, 9476–9479 (2008).

    CAS  Google Scholar 

  96. Backov, R. Combining soft matter and soft chemistry: integrative chemistry towards designing novel and complex multiscale architectures. Soft Matter 2, 452–464 (2006).

    CAS  Google Scholar 

  97. Chandrappa, G. T., Steunou, N. & Livage, J. Macroporous crystalline vanadium oxide foam. Nature 416, 702 (2002).

    CAS  Google Scholar 

  98. Walsh, D. et al. Preparation of higher-order zeolite materials using dextran templating. Angew. Chem. Int. Ed. 43, 6691–6695 (2004).

    CAS  Google Scholar 

  99. Grzybowski, B. A., Bishop, K. J. M., Campbell, C. J., Fialkowski, M. & Smoukov, S. K. Micro- and nanotechnology via reaction-diffusion. Soft Matter 1, 114–128 (2005).

    CAS  Google Scholar 

  100. Nicolis, G. & Prigogine, I. Self-Organization in Nonequilibrium Systems - From Dissipative Structures to Order Through Fluctuations (Wiley, 1977).

    Google Scholar 

  101. Haase, C. S., Chadam, J., Feinn, D. & Ortoleva, P. Oscillatory zoning in plagioclase feldspar. Science 209, 272–274 (1980).

    CAS  Google Scholar 

  102. Short, M. B. et al. Stalactite growth as a free-boundary problem: a geometric law and its platonic ideal. Phys. Rev. Lett. 94, 18501 (2005).

    Google Scholar 

  103. Tabor, Z., Rokita, E. & Cichocki, T. Origin of the pattern of trabecular bone: an experiment and a model. Phys. Rev. E 66, 51906 (2002).

    Google Scholar 

  104. Liesegang, R. E. Uber einige Eigenschaften von Gallerten. Naturwiss. Wochenschr. 11, 353–362 (1896).

    Google Scholar 

  105. Devon, R., RoseFigura, J., Douthat, D., Kudenov, J. & Maselko, J. Complex morphology in a simple chemical system. Chem. Commun. 1678–1680 (2005).

  106. Collins, A. M., Carriazo, D., Davis, S. A & Mann, S. Spontaneous template-free assembly of ordered macroporous titania. Chem Commun. 568–569 (2004).

  107. Leonard, A. & Su, B. L. A novel and template-free method for the spontaneous formation of aluminosilicate macro-channels with mesoporous walls. Chem. Commun. 1674–1675 (2004).

  108. Deng, W. H. & Shanks, B. H. Synthesis of hierarchically structured aluminas under controlled hydrodynamic conditions. Chem. Mater. 17, 3092–3100 (2005).

    CAS  Google Scholar 

  109. Henisch, H. K. Crystals in Gels and Liesegang Rings (Cambridge Univ. Press, 1988).

    Google Scholar 

  110. Mueller, K. F. Periodic interfacial precipitation in polymer films. Science 225, 1021–1027 (1984).

    CAS  Google Scholar 

  111. Bitner, A., Fialkowski, M., Smoukov, S. K., Campbell, C. J. & Grzybowski, B. A. Amplification of changes of a thin film's macromolecular structure into macroscopic reaction−diffusion patterns. J. Am. Chem. Soc. 127, 6936–6937 (2005).

    CAS  Google Scholar 

  112. Sugawara, A., Ishii, T. & Kato, T. Self-organized calcium carbonate with regular surface-relief structures. Angew. Chem. Int. Ed. 42, 5299–5303 (2003).

    CAS  Google Scholar 

  113. Imai, H., Tatar, S., Furuichi, K. & Oaki, Y. Formation of calcium phosphate having a hierarchically laminated architecture through periodic precipitation in organic gel. Chem. Commun. 1952–1953 (2003).

  114. Voinescu, A. E. et al. Inorganic self-organized silica aragonite biomorphic composites. Cryst. Growth Des. 8, 1515–1521 (2008).

    CAS  Google Scholar 

  115. Yu, J., Guo, H., Davis, S. A. & Mann, S. Fabrication of monodisperse calcium carbonate hollow microspheres by chemically induced self-transformation. Adv. Funct. Mater. 16, 2035–2041 (2006).

    CAS  Google Scholar 

  116. Zeng, H. C. Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem. 16, 649–662 (2006).

    CAS  Google Scholar 

  117. Oaki, Y. & Imai, H. Hierarchically organized superstructure emerging from the exquisite association of inorganic crystals, organic polymers, and dyes: a model approach towards suprabiomineral materials. Adv. Funct. Mater. 15, 1407–1414 (2005).

    CAS  Google Scholar 

  118. Li, M., Coelfen, H. & Mann, S. Morphological control of BaSO4 microstructures by double hydrophilic block copolymer mixtures. J. Mater. Chem. 14, 2269–2276 (2004).

    CAS  Google Scholar 

  119. Viravaidya, C., Li, M. & Mann, S. Microemulsion-based synthesis of stacked calcium carbonate (calcite) superstructures. Chem Commun. 2182–2183 (2004).

  120. Xing, Y., Li, M., Davis, S. A. & Mann, S. Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media. J. Phys. Chem. 110, 1111–1113 (2006).

    CAS  Google Scholar 

  121. Aisenberg, J., Miller, D. A., Grazul, J. L. & Hamann, D. R. Direct fabrication of large micropatterned single crystals. Science 299, 1205–1208 (2003).

    Google Scholar 

  122. Nakanishi, T. et al. Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. Small 3, 2019–2023 (2007).

    CAS  Google Scholar 

  123. Garcia-Ruiz, J. M., Melero-Gracia, E. & Hyde, S. T. Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323, 362–365 (2009).

    CAS  Google Scholar 

  124. Escudero, C., Crusats, J., Diez-Perez, I., El-Hachemi, Z. & Ribó, J. Folding and hydrodynamic forces in J-aggregates of 5-phenyl-10,15,20-tris(4-sulphophenyl)porphyrin. Angew. Chem. Int. Ed. 45, 8032–8035 (2006).

    CAS  Google Scholar 

  125. Hopwood, J. D. & Mann, S. Synthesis of barium sulphate nanoparticles and nanofilaments in reverse micelles and microemulsions. Chem. Mater. 9, 1819–1828 (1997).

    CAS  Google Scholar 

  126. Klajn, R., Bishop, K. J. M. & Grzybowski, B. A. Light-controlled self-assembly of reversible and irreversible nanoparticle suprastructures. Proc. Natl Acad. Sci. USA 104, 10305–10309 (2007).

    CAS  Google Scholar 

  127. Bruinsma, R. F., Gelbart, W. M., Reguera, D., Rudnick, J. & Zandi, R. Viral self-assembly as a thermodynamic process. Phys. Rev. Lett. 90, 248101 (2003).

    Google Scholar 

  128. Israelachvili, J. Intermolecular & Surface Forces (Academic Press, 1991).

    Google Scholar 

  129. Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, 2001).

    Google Scholar 

  130. Lee, S. Y., Royston, E., Culver, J. & Harris, M. Improved metal cluster deposition on a genetically engineered tobacco mosaic virus template. Nanotechnology. 16, S435–S441 (2005).

    Google Scholar 

  131. Douglas, T. et al. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater. 14, 415–418 (2002).

    CAS  Google Scholar 

  132. Grzybowski, B. A. & Campbell, C. J. Complexity and dynamic self-assembly. Chem. Eng. Sci. 59, 1667–1676 (2004).

    CAS  Google Scholar 

  133. Cross, M. C. & Hohenberg, P. C. Pattern formation out of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    CAS  Google Scholar 

  134. Kurin-Csorgei, K., Epstein, I. R. & Orban, M. Systematic design of chemical oscillators using complexation and precipitation equilibria. Nature 433, 139–142 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nature Mater 8, 781–792 (2009). https://doi.org/10.1038/nmat2496

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2496

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing