Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unexpected power-law stress relaxation of entangled ring polymers

Abstract

After many years of intense research, most aspects of the motion of entangled polymers have been understood. Long linear and branched polymers have a characteristic entanglement plateau and their stress relaxes by chain reptation or branch retraction, respectively. In both mechanisms, the presence of chain ends is essential. But how do entangled polymers without ends relax their stress? Using properly purified high-molar-mass ring polymers, we demonstrate that these materials exhibit self-similar dynamics, yielding a power-law stress relaxation. However, trace amounts of linear chains at a concentration almost two decades below their overlap cause an enhanced mechanical response. An entanglement plateau is recovered at higher concentrations of linear chains. These results constitute an important step towards solving an outstanding problem of polymer science and are useful for manipulating properties of materials ranging from DNA to polycarbonate. They also provide possible directions for tuning the rheology of entangled polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of entangled polymer conformations and relaxation models.
Figure 2: Stress relaxation moduli G(t) of entangled polymers.
Figure 3: Effects of added linear chains on entangled purified ring polymer rheology.
Figure 4: Illustrations of conformations of mixtures involving ring and linear polymers.

Similar content being viewed by others

References

  1. Rouse, P. E. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 1272–1280 (1953).

    Article  CAS  Google Scholar 

  2. Doi, M. & Edwards, S. F. The Theory of Polymer Dynamics (Oxford Univ. Press, 1986).

    Google Scholar 

  3. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, 2003).

    Google Scholar 

  4. De Gennes, P. G. Reptation of a polymer chain in a presence of fixed obstacles. J. Chem. Phys. 35, 572–579 (1971).

    Article  Google Scholar 

  5. Doi, M. & Edwards, S. F. Dynamics of concentrated polymer systems. Part 1. Brownian motion in the equilibrium state. J. Chem. Soc. Faraday Trans. 2 74, 1789–1801 (1978).

    Article  CAS  Google Scholar 

  6. De Gennes. Reptation of stars. J. Phys. France 36, 1199–1203 (1975).

    Article  Google Scholar 

  7. Doi, M. & Kuzuu, N. Y. Rheology of star polymers in concentrated solutions and melts. J. Polym. Sci. C 18, 775–780 (1980).

    CAS  Google Scholar 

  8. McLeish, T. C. B. Hierarchical relaxation in tube models of branched polymers. Europhys. Lett. 6, 511–516 (1988).

    Article  CAS  Google Scholar 

  9. McLeish, T. C. B. Polymers without beginning or end. Science 297, 2005–2006 (2002).

    Article  CAS  Google Scholar 

  10. Robertson, R. M. & Smith, D. E. Strong effects of molecular topology on diffusion of entangled DNA molecules. Proc. Natl Acad. Sci. 104, 4824–4827 (2007).

    Article  CAS  Google Scholar 

  11. Klein, J. Dynamics of entangled linear branched and cyclic polymers. Macromolecules 19, 105–108 (1986).

    Article  CAS  Google Scholar 

  12. Rubinstein, M. Dynamics of ring polymers in the presence of fixed obstacles. Phys. Rev. Lett. 24, 3023–3026 (1986).

    Article  Google Scholar 

  13. Nechaev, S. N., Semenov, A. N. & Koleva, M. K. Dynamics of a polymer chain in an array of obstacles. Physica A 140, 506–520 (1987).

    Article  Google Scholar 

  14. Obukhov, S. P., Rubinstein, M. & Duke, T. Dynamics of a ring polymer in a gel. Phys. Rev. Lett. 73, 1263–1266 (1994).

    Article  CAS  Google Scholar 

  15. Semlyen, J. A. (ed.) Cyclic Polymers 2nd edn (Kluwer, 2000).

  16. Hild, G., Strazielle, C. & Rempp, P. Cyclic macromolecules—synthesis and characterization of ring-shaped polystyrenes. Eur. Polym. J. 19, 721–727 (1983).

    Article  CAS  Google Scholar 

  17. Roovers, J. & Toporowski, P. M. Synthesis and characterization of ring polybutadienes. J. Polym. Sci. B 26, 1251–1259 (1988).

    Article  CAS  Google Scholar 

  18. Roovers, J. & Toporowski, P. M. Synthesis of high molecular-weight ring polystyrenes. Macromolecules 16, 843–849 (1983).

    Article  CAS  Google Scholar 

  19. Bielawski, C. W., Benitez, D. & Grubbs, R. H. An ‘endless’ route to cyclic polymers. Science 297, 2041–2044 (2002).

    Article  CAS  Google Scholar 

  20. Roovers, J. Melt properties of ring polystyrenes. Macromolecules 18, 1359–1361 (1985).

    Article  CAS  Google Scholar 

  21. McKenna, G. B., Hostetter, B. J., Hadjichristidis, N., Fetters, L. J. & Plazek, D. J. A study of the linear viscoelastic properties of cyclic polystyrenes using creep and recovery measurements. Macromolecules 22, 1834–1852 (1989).

    Article  CAS  Google Scholar 

  22. Orrah, D. J., Semlyen, J. A. & Ross-Murphy, S. B. Studies of cyclic and linear poly(dimethylsiloxanes): 27. Bulk viscosities above the critical molar mass for entanglement. Polymer 29, 1452–1454 (1988).

    Article  CAS  Google Scholar 

  23. McKenna, G. B. et al. Dilute solution characterization of cyclic polystyrene molecules and their zero-shear viscosity in the melt. Macromolecules 20, 498–512 (1987).

    Article  CAS  Google Scholar 

  24. Roovers, J. in Current Topics in Polymer Science, Vol. II—Rheology and Polymer Processing/Multiphase Systems (eds Ottenbrite, R. M., Utracki, L. A. & Inoue, S.) (Hanser, 1987).

    Google Scholar 

  25. Roovers, J. Viscoelastic properties of polybutadiene rings. Macromolecules 21, 1517–1521 (1988).

    Article  CAS  Google Scholar 

  26. McKenna, G. B. & Plazek, D. J. The viscosity of blends of linear and cyclic molecules of similar molecular mass. Polym. Commun. 27, 304–306 (1986).

    Article  CAS  Google Scholar 

  27. Mills, P. J. et al. Diffusion of polymer rings in linear polymer matrices. Macromolecules 20, 513–518 (1987).

    Article  CAS  Google Scholar 

  28. Pasch, H. & Trathnigg, B. HPLC of Polymers (Springer, 1997).

    Google Scholar 

  29. Lee, H. C., Lee, H., Lee, W., Chang, T. & Roovers, J. Fractionation of cyclic polystyrene from linear precursor by HPLC at the chromatographic critical condition. Macromolecules 33, 8119–8121 (2000).

    Article  CAS  Google Scholar 

  30. Brown, S., Lenczycki, T. & Szamel, G. Influence of topological constraints on the statics and dynamics of ring polymers. Phys. Rev. E 63, 052801 (2001).

    Article  CAS  Google Scholar 

  31. Muller, M., Wittmer, J. P. & Cates, M. E. Topological effects in ring polymers: A computer simulation study. Phys. Rev. E 53, 5063–5074 (1996).

    Article  CAS  Google Scholar 

  32. Kawaguchi, D. et al. Comparison of interdiffusion behaviour between cyclic and linear polystyrenes with high molar masses. Macromolecules 39, 5180–5182 (2006).

    Article  CAS  Google Scholar 

  33. Marrucci, G. Relaxation by reptation and tube enlargement: A model for polydisperse polymers. J. Polym. Sci. Polym. Phys. Ed. 23, 159–177 (1985).

    Article  CAS  Google Scholar 

  34. Viovy, J. L., Rubinstein, M. & Colby, R. H. Constraint release in polymer melts: Tube reorganization versus tube dilation. Macromolecules 24, 3587–3596 (1991).

    Article  CAS  Google Scholar 

  35. McLeish, T. C. B. Why, and when, does dynamic tube dilation work for stars? J. Rheol. 47, 177–198 (2003).

    Article  CAS  Google Scholar 

  36. Fetters, L. J., Lohse, D. J. & Colby, R. H. in Physical Properties of Polymers Handbook 2nd edn (ed. Mark, J. E.) (Springer, 2006).

    Google Scholar 

  37. Obukhov, S. P., Rubinstein, M. & Colby, R. H. Network modulus and superelasticity. Macromolecules 27, 3191–3198 (1994).

    Article  CAS  Google Scholar 

  38. Koniaris, K. & Muthukumar, M. Knottedness in ring polymers. Phys. Rev. Lett. 66, 2211–2214 (1991).

    Article  CAS  Google Scholar 

  39. Orlandini, E. & Whittington, S. G. Statistical physics of closed curves: Some applications in polymer physics. Rev. Mod. Phys. 79, 611–642 (2007).

    Article  CAS  Google Scholar 

  40. Grosberg, A. Y. Critical exponents for random knots. Phys. Rev. Lett. 85, 3858–3861 (2000).

    Article  CAS  Google Scholar 

  41. Moore, N. T. & Grosberg, A. Y. Limits of analogy between self-avoidance and topology driven swelling of polymer loops. Phys. Rev. E 72, 0161803 (2005).

    Article  Google Scholar 

  42. Zoller, P. & Walsh, D. Standard Pressure-Volume-Temperature Data for Polymers (Technomic, 1995).

    Google Scholar 

  43. Ferry, J. D. Viscoelastic Properties of Polymers 3rd edn (Wiley, 1980).

    Google Scholar 

  44. vanRuymbeke, E., Kapnistos, M., Vlassopoulos, D., Huang, T. & Knauss, D. M. Linear melt rheology of pom–pom polystyrenes with unentangled branches. Macromolecules 40, 1713–1719 (2007).

    Article  Google Scholar 

  45. Cates, M. E. & Deutsch, J. M. Conjectures on the statistics of ring polymers. J. Phys. (Paris) 47, 2121–2128 (1986).

    Article  CAS  Google Scholar 

  46. Iyer, B. V. S., Lele, A. K. & Shanbhag, S. What is the size of a ring polymer in a ring-linear blend? Macromolecules 40, 5995–6000 (2007).

    Article  CAS  Google Scholar 

  47. Isichenko, B. Percolation, statistical topography, and transport in random media. Rev. Mod. Phys. 64, 961–1043 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to J. Roovers for providing the original ring polymers used in this work and for many insightful discussions. We are particularly grateful to S. T. Milner and T. C. B. McLeish for extended discussions that clarified the role of constraint release and significantly improved the quality of the paper. We thank S. Panyukov, S. P. Obukhov, N. Hadjichristidis, B. Loppinet, E. van Ruymbeke, G. Fytas, A.Y. Grosberg, C. Tsenoglou and M. Vamvakaki for helpful discussions. This work was supported by EU (NoE Softcomp NMP3-CT-2004-502235), NSF (CHE-0616925, CBET-0609087), NIH (1-R01-HL0775486A) and KOSEF (CIMS, R0A-2007-000-20125-0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Vlassopoulos or M. Rubinstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapnistos, M., Lang, M., Vlassopoulos, D. et al. Unexpected power-law stress relaxation of entangled ring polymers. Nature Mater 7, 997–1002 (2008). https://doi.org/10.1038/nmat2292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2292

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing