Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1

Abstract

Lithium-ion batteries have revolutionized the powering of portable electronics. Electrode reactions in these electrochemical systems are based on reversible insertion/deinsertion of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive positive electrode materials will be required, among which LiFePO4 is a leading contender. An intriguing fundamental problem is to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO4 system. In contrast to the well-documented two-phase nature of this system at room temperature, we give the first experimental evidence of a solid solution LixFePO4 (0 ≤ x ≤ 1) at 450 °C, and two new metastable phases at room temperature with Li0.75FePO4 and Li0.5FePO4 composition. These experimental findings challenge theorists to improve predictive models commonly used in the field. Our results may also lead to improved performances of these electrodes at elevated temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Projections of the triohylite LiFePO4 structure.
Figure 2: XRD patterns of LixFePO4 global compositions at 50 °C and 350 °C.
Figure 3: Temperature-controlled XRD patterns of two selected LixFePO4 global compositions under N2.
Figure 4: Unit-cell parameters as a function of x in LixFePO4 at 350 °C.
Figure 5: XRD patterns of quenched LixFePO4 (x = 0.8, 0.6, 0.4, 0.2) samples, from 400 °C to 25 °C.
Figure 6: Phase distribution diagrams of LixFePO4 (0 ≤ x ≤ 1) established from temperature-controlled XRD data.

Similar content being viewed by others

References

  1. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive electrode materials for lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  CAS  Google Scholar 

  2. Ravet, N. et al. in 196th Electrochemical Society Meeting, Honolulu, Hawaii Abstract 127 (Electrochemical Society, Pennington, New Jersey, 1999).

    Google Scholar 

  3. Dominko, R., Gaberscek, M., Drofenik, J., Bele, M. & Pejovnik, S. A novel coating technology for preparation of cathodes in Li-ion batteries. Electrochem. Solid State Lett. 4, A187–A190 (2001).

    Article  CAS  Google Scholar 

  4. Huang, H., Yin, S. C. & Nazar, L. F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid State Lett. 4, A170–A172 (2001).

    Article  CAS  Google Scholar 

  5. Yamada, A., Chung, S. C. & Hinokuna, K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc., 148, A224–A229 (2001).

    Article  CAS  Google Scholar 

  6. Franger, S., Le Cras, F., Bourbon, C. & Rouault, H. LiFePO4 synthesis routes for enhanced electrochemical performance. Electrochem. Solid State Lett. 5, A231–A233 (2002).

    Article  CAS  Google Scholar 

  7. Armand, M., Gauthier, M., Magnan, J. -F. & Ravet, N. Method for synthesis of carbon-coated redox materials with controlled size. World Patent WO 02/27823 A1 (2002).

  8. Arnold, G. et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique. J. Power Sources 119–121, 247–251 (2003).

    Article  Google Scholar 

  9. Barker, J., Saidi, M. Y. & Swoyer, J. L. Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method. Electrochem. Solid State Lett. 6, A53–A55 (2003).

    Article  CAS  Google Scholar 

  10. Yamada, A. et al. Olivine-type cathodes: achievements and problems. J. Power Sources 119–121, 232–238 (2003).

    Article  Google Scholar 

  11. Audemer, A., Wurm, C., Morcrette, M., Gwizdala, S. & Masquelier, C. Carbon-coated metal bearing powders and process for production thereof. World Patent WO 2004/001881 A2 (2004).

  12. Subramanya Herle, P., Ellis, B., Coombs, N. & Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Mater. 3, 147–152 (2004).

    Article  Google Scholar 

  13. Delacourt, C., Wurm, C., Reale, P., Morcrette, M. & Masquelier, C. Low temperature preparation of optimized phosphates for Li-battery applications. Solid State Ionics 173, 113–118 (2004).

    Article  CAS  Google Scholar 

  14. Andersson, A. S., Kalska, B., Häggström, L. & Thomas, J. O. Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mössbauer spectroscopy study. Solid State Ionics 130, 41–52 (2000).

    Article  CAS  Google Scholar 

  15. Santoro, R. P. & Newman, R. E. Antiferromagnetism in LiFePO4 . Acta Crystallogr. 22, 344–347 (1967).

    Article  CAS  Google Scholar 

  16. Andersson, A. S. & Thomas, J. O. The source of first-cycle capacity loss in LiFePO4 . J. Power Sources 97–98, 498–502 (2001).

    Article  Google Scholar 

  17. Rousse, G., Rodriguez-Carvajal, J., Patoux, S. & Masquelier, C. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4 . Chem. Mater. 15, 4082–4090 (2003).

    Article  CAS  Google Scholar 

  18. Morgan, D., Van der Ven, A. & Ceder, G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State Lett. 7, A30–A32 (2004).

    Article  CAS  Google Scholar 

  19. Zhou, F., Marianetti, C. A., Cococcioni, M., Morgan, D. & Ceder, G. Phase separation in LixFePO4 induced by correlation effects. Phys. Rev. B 69, 201101 (2004).

    Article  Google Scholar 

  20. Dahn, J. R. & Mckinnon W. R. Phase diagram of LixMo6Se8 for 0 < x < 1 from in situ X-ray studies. Phys. Rev. B 32, 3003–3005 (1985).

    Article  CAS  Google Scholar 

  21. Wizansky, A. R., Rauch, P. E. & Disalvo, J. F. Powerful oxidizing agents for the oxidative deintercalation of lithium from transition-metal oxides. J. Solid State Chem. 81, 203–207 (1989).

    Article  CAS  Google Scholar 

  22. Bykov, A. et al. Superionic conductors Li3M2(PO4)3 (M=Fe, Sc, Cr): synthesis, structure and electrophysical properties Solid State Ionics 38, 31–52 (1990).

    Article  CAS  Google Scholar 

  23. Gorbunov, Yu. A. et al. Crystal structure of Fe2+3Fe3+4[PO4]6 . Sov. Phys. Dokl. 25, 785–787 (1980).

    Google Scholar 

  24. Dodd, J., Yazami, R. & Fultz, B. in 206thmeeting of the Electrochemical Society, Honolulu, Hawaii Abstract 425 (Electrochemical Society, Pennington, New Jersey, 2004).

    Google Scholar 

  25. Goiffon, A., Dumas, J.- C. & Philippot, E. Phases de type quartz alpha: structure de FePO4 et spectrométrie Mössbauer du Fer-57. Rev. Chimie Minérale 23, 99–110 (1986).

    CAS  Google Scholar 

  26. Coleman, S. T., Mckinnon W. R. & Dahn, J. R. Lithium intercalation in LixMo6Se8: A model mean-field lattice gas. Phys. Rev. B 29, 4147–4149 (1984).

    Article  CAS  Google Scholar 

  27. Ceder, G. & Van der Ven, A. Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochem. Acta 45, 131–150 (1999).

    Article  CAS  Google Scholar 

  28. Anisimov, V. I. in Advances in Condensed Matter Science (Gordon & Breach, New York, 2000).

    Google Scholar 

  29. Selwyn, L. S., McKinnon, W. R., Dahn, J. R. & Le Page Y. Local environment of Li intercalated in Mo6SezS8-z as probed using electrochemical methods. Phys. Rev. B 33, 6405–6414 (1986).

    Article  CAS  Google Scholar 

  30. Yamada, A. & Chung, S. C. Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and (MnyFe1-y)PO4 as possible 4V cathode materials for lithium batteries. J. Electrochem. Soc. 148, A960–A967 (2001).

    Article  CAS  Google Scholar 

  31. Yamada, A., Kudo, Y. & Liu, K. -Y. Phase diagram of Lix(MnyFe1-y)PO4 (0 ≤ x, y ≤ 1). J. Electrochem. Soc. 148, A1153–A1158 (2001).

    Article  CAS  Google Scholar 

  32. Yamada, A., Kudo, Y. & Liu, K. Y. Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4 (0 ≤ x ≤ 1). J. Electrochem. Soc. 148, A747–A754 (2001).

    Article  CAS  Google Scholar 

  33. Chung, S. Y., Bloking, J. T. & Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater. 1, 123–126 (2002).

    Article  CAS  Google Scholar 

  34. Delacourt, C., Wurm, C., Laffont, L., Leriche, J. B. & Masquelier, C. in Proc. MRS Fall Meeting 2004 (in the press).

  35. Wurm, C., Morcrette, M., Gwizdala, S. & Masquelier, C. Lithium transition-metal phosphate powder for rechargeable batteries. World Patent WO 02/099913 A1 (2002).

  36. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to D. Murphy and M. Touboul for helpful comments and discussions on this manuscript. They also thank UMICORE (Belgium) and C. Wurm for providing the pristine LiFePO4 powder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Masquelier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures 1 and 2 (PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delacourt, C., Poizot, P., Tarascon, JM. et al. The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1. Nature Mater 4, 254–260 (2005). https://doi.org/10.1038/nmat1335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing