Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic multilayers on nanospheres

Abstract

Thin-film technology is widely implemented in numerous applications1. Although flat substrates are commonly used, we report on the advantages of using curved surfaces as a substrate. The curvature induces a lateral film-thickness variation that allows alteration of the properties of the deposited material2,3. Based on this concept, a variety of implementations in materials science can be expected. As an example, a topographic pattern formed of spherical nanoparticles4,5 is combined with magnetic multilayer film deposition. Here we show that this combination leads to a new class of magnetic material with a unique combination of remarkable properties: The so-formed nanostructures are monodisperse, magnetically isolated, single-domain, and reveal a uniform magnetic anisotropy with an unexpected switching behaviour induced by their spherical shape. Furthermore, changing the deposition angle with respect to the particle ensemble allows tailoring of the orientation of the magnetic anisotropy, which results in tilted nanostructure material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetic images of self-assembled particle arrays after Co/Pd film deposition.
Figure 2: Polar MOKE hysteresis loops.
Figure 3: Switching field (HS) as a function of the angle (θ) of the applied field (Happl).
Figure 4: MOKE hysteresis loops.

Similar content being viewed by others

References

  1. Elshabini-Riad, A. & Barlow, F. D. Thin-Film Technology Handbook (McGraw-Hill, New York, 1997).

    Google Scholar 

  2. Chen, Y. J. et al. Periodic magnetic nanostructures on self-assembled surfaces by ion beam bombardment. J. Appl. Phys. 91, 7323–7325 (2002).

    Article  CAS  Google Scholar 

  3. Chalastaras, A. et al. GMR multilayers on a new embossed surface. IEEE Trans. Magn. 40, 2257–2259 (2004).

    Article  CAS  Google Scholar 

  4. Fischer, U. C. & Zingsheim, H. P. Submicroscopic pattern replication with visible light. J. Vac. Sci. Technol. 19, 881–885 (1981).

    Article  CAS  Google Scholar 

  5. Deckman, H. W. & Dunsmuir, J. H. Natural lithography. Appl. Phys. Lett. 41, 377–379 (1982).

    Article  CAS  Google Scholar 

  6. Moser, A. et al. Magnetic recording: advancing into the future. J. Phys. D 35, R157–167 (2002).

    Article  CAS  Google Scholar 

  7. Weller, D. & Moser, A. Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans. Magn. 35, 4423–4439 (1999).

    Article  CAS  Google Scholar 

  8. Sun, S., Murray, C. B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 87, 1989–1992 (2000).

    Article  Google Scholar 

  9. Carcia, P. F., Meinhaldt, A. D. & Suna A. Perpendicular magnetic anisotropy in Pd/Co thin film layered structures. Appl. Phys. Lett. 47, 178–180 (1985).

    Article  CAS  Google Scholar 

  10. Suzuki, T. Coercivity mechanism in (Co/Pt) and (Co/Pd) multilayers. Scripta Metall. Mater. 33, 1609–1623 (1995).

    Article  CAS  Google Scholar 

  11. Hu, G. et al. Magnetic and recording properties of Co/Pd islands on prepatterned substrates. J. Appl. Phys. 95, 7013–7015 (2004).

    Article  CAS  Google Scholar 

  12. Landis, S., Rodmacq, B. & Dieny, B. Magnetic properties of Co/Pt multilayers deposited on silicon dot arrays. Phys. Rev. B 62, 12271–12281 (2000).

    Article  CAS  Google Scholar 

  13. Bardou, N. et al. Light diffraction effects in the magneto-optical properties of 2D arrays of magnetic dots of Au/Co/Au(111) films with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 148, 293–294 (1995).

    Article  CAS  Google Scholar 

  14. Stoner, E. C. & Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. A 240, 599–642 (1948).

    Article  Google Scholar 

  15. Scholz, W. et al. Implementation of a high performance parallel finite element micromagnetics package. J. Magn. Magn. Mater. 272, 693–694 (2004).

    Article  Google Scholar 

  16. Zou, Y. Y., Wang, J. P., Hee, C. H. & Chong, T. C. Tilted media in a perpendicular recording system for high areal density recording. Appl. Phys. Lett. 82, 2473–2475 (2003).

    Article  CAS  Google Scholar 

  17. Kai-Zhong, G. & Bertram, H. N. Transition jitter estimates in tilted and conventional perpendicular recording media at 1 Tb/in2. IEEE Trans. Magn. 39, 704–709 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft through SFB 513 and the Emmy Noether program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Albrecht.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, M., Hu, G., Guhr, I. et al. Magnetic multilayers on nanospheres. Nature Mater 4, 203–206 (2005). https://doi.org/10.1038/nmat1324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1324

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing