Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrical spin injection from an n-type ferromagnetic semiconductor into a III–V device heterostructure

Abstract

The use of carrier spin in semiconductors is a promising route towards new device functionality and performance. Ferromagnetic semiconductors (FMSs) are promising materials in this effort. An n-type FMS that can be epitaxially grown on a common device substrate is especially attractive. Here, we report electrical injection of spin-polarized electrons from an n-type FMS, CdCr2Se4, into an AlGaAs/GaAs-based light-emitting diode structure. An analysis of the electroluminescence polarization based on quantum selection rules provides a direct measure of the sign and magnitude of the injected electron spin polarization. The sign reflects minority rather than majority spin injection, consistent with our density-functional-theory calculations of the CdCr2Se4 conduction-band edge. This approach confirms the exchange-split band structure and spin-polarized carrier population of an FMS, and demonstrates a litmus test for these FMS hallmarks that discriminates against spurious contributions from magnetic precipitates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model of the crystal structure of bulk CdCr2Se4.
Figure 2: Spin-LED devices.
Figure 3: Electroluminescence spectra showing signature of spin injection.
Figure 4: Optical polarization versus applied magnetic field.
Figure 5: Theoretical densities of states (DOS) of bulk CdCr2Se4 calculated within LDA.

Similar content being viewed by others

References

  1. Wolf, S. W. et al. Spintronics: A spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  2. Prinz, G. A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  CAS  Google Scholar 

  3. Flatte, M. E. & Beyers, J. M. Spin diffusion in semiconductors. Phys. Rev. Lett. 84, 4220–4223 (2000).

    Article  CAS  Google Scholar 

  4. Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  CAS  Google Scholar 

  5. Jonker, B. T. Progress toward electrical injection of spin-polarized electrons into semiconductors. IEEE Proc. 91, 727–740 (2003).

    Article  CAS  Google Scholar 

  6. Munekata, H. et al. Diluted magnetic III–V semiconductors. Phys. Rev. Lett. 63, 1849–1852 (1989).

    Article  CAS  Google Scholar 

  7. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Article  CAS  Google Scholar 

  8. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 287, 1019–1022 (2000).

    Article  CAS  Google Scholar 

  9. Dietl, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B 63, 195205 (2001).

    Article  Google Scholar 

  10. Petukhov, A., Chantis, A. N. & Demchenko, D. O. Resonant enhancement of tunneling magnetoresistance in double-barrier magnetic heterostrustures. Phys. Rev. Lett. 89, 107205 (2002).

    Article  CAS  Google Scholar 

  11. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  CAS  Google Scholar 

  12. Hayashi, T., Tanaka, M. & Asamitsu, A. Tunneling magnetoresistance of a GaMnAs-based double barrier ferromagnetic tunnel junction. J. Appl. Phys. 87, 4673–4675 (2000).

    Article  CAS  Google Scholar 

  13. Kohda, M., Ohno, Y., Takamura, K., Matsukura F. & Ohno, H. A spin Esaki diode. Jpn J. Appl. Phys. 40, L1274–L1276 (2001).

    Article  CAS  Google Scholar 

  14. Johnston-Halperin, E. et al. Spin-polarized Zener tunneling in (Ga,Mn)As. Phys. Rev. B 65, 041306(R) (2002).

    Article  Google Scholar 

  15. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Article  CAS  Google Scholar 

  16. Park, Y. D. et al. A group-IV ferromagnetic semiconductor: MnxGe1−x . Science 295, 651–654 (2002).

    Article  CAS  Google Scholar 

  17. Nazmul, A. M., Kobayashi, S., Sugahara, S. & Tanaka, M. Control of ferromagnetism in Mn delta-doped GaAs-based semiconductor heterostructures. Physica E 21, 937–943 (2004).

    Article  CAS  Google Scholar 

  18. Feher, G. & Gere, E. A. Electron spin resonance experiments on donors in Si. II. Electron spin relaxation effects. Phys. Rev. 114, 1245–1256 (1959).

    Article  CAS  Google Scholar 

  19. Hagele, D., Oestreich, M., Ruhle, W. W., Nestle, N. & Eberl, K. Spin transport in GaAs. Appl. Phys. Lett. 73, 1580–1582 (1998).

    Article  CAS  Google Scholar 

  20. Kikkawa, J. M & Awschalom, D. D. Lateral drag of spin coherence in gallium arsenide. Nature 397, 139–141 (1999).

    Article  CAS  Google Scholar 

  21. Oestreich, M. Materials science: Injecting spin into electronics. Nature 402, 735–737 (1999).

    Article  CAS  Google Scholar 

  22. Beschoten, B. et al. Spin coherence and dephasing in GaN. Phys. Rev. B 63, 121202 (2001).

    Article  Google Scholar 

  23. Medvedkin, G. A. et al. Room temperature ferromagnetism in novel diluted magnetic semiconductor Cd1−xMnxGeP2 . Jpn J. Appl. Phys. 39, L949–L951 (2000).

    Article  CAS  Google Scholar 

  24. Matsumoto, Y. et al. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854–856 (2001).

    Article  CAS  Google Scholar 

  25. Ueda, K., Tabata, H. & Kawai, T. Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79, 988–990 (2001).

    Article  CAS  Google Scholar 

  26. Ando, K. et al. Large magneto-optical effect in an oxide diluted magnetic semiconductor Zn1−xCoxO. Appl. Phys. Lett. 78, 2700–2702 (2001).

    Article  CAS  Google Scholar 

  27. Chambers, S. A. & Farrow, R. F. C. New possibilities for ferromagnetic semiconductors. Mater. Res. Soc. Bull. 28, 729–734 (2003).

    Article  CAS  Google Scholar 

  28. Chambers, S. A. et al. Clusters and magnetism in epitaxial Co-doped TiO2 anatase. Appl. Phys. Lett. 82, 1257–1259 (2003).

    Article  CAS  Google Scholar 

  29. Jonker, B. T., Erwin, S. C., Petrou, A. & Petukhov, A. G. Electrical spin injection and transport in semiconductor spintronic devices. Mater. Res. Soc. Bull. 28, 740–748 (2003).

    Article  CAS  Google Scholar 

  30. Dietl, T. & Ohno, H. Ferromagnetic III–V and II–VI semiconductors. Mater. Res. Soc. Bull. 28, 714–720 (2003).

    Article  CAS  Google Scholar 

  31. Flatte, M. E., Yu, Z. G., Johnston-Halperin, E. & Awschalom, D. D. Theory of semiconductor magnetic bipolar transistors. Appl. Phys. Lett. 82, 4740–4742 (2003).

    Article  CAS  Google Scholar 

  32. Fabian, J., Zutic, I. & Das Sarma, S. Magnetic bipolar transistor. Appl. Phys. Lett. 84, 85–87 (2004).

    Article  CAS  Google Scholar 

  33. Hanbicki, A. T., Jonker, B. T., Itskos, G., Kioseoglou, G. & Petrou, A. Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor. Appl. Phys. Lett. 80, 1240–1242 (2002).

    Article  CAS  Google Scholar 

  34. Hanbicki, A. T. et al. Analysis of the transport process providing spin injection through an Fe/AlGaAs Schottky barrier. Appl. Phys. Lett. 82, 4092–4094 (2003).

    Article  CAS  Google Scholar 

  35. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  Google Scholar 

  36. Jonker, B. T. et al. Robust electrical spin injection into a semiconductor heterostructure. Phys. Rev. B 62, 8180–8183 (2000).

    Article  CAS  Google Scholar 

  37. Dyakonov, M. I. & Perel, V. I. in Optical Orientation (eds Meier, F. & Zakharchenya, B. P.) 11 (North-Holland, Amsterdam, 1984).

    Book  Google Scholar 

  38. Park, Y. D., Hanbicki, A. T., Mattson, J. E. & Jonker, B. T. Epitaxial growth of an n-type ferromagnetic semiconductor CdCr2Se4 on GaAs(001) and GaP(001). Appl. Phys. Lett. 81, 1471–1473 (2002).

    Article  CAS  Google Scholar 

  39. Zhao, H. B. et al. Band offsets at CdCr2Se4-(AlGa)As and CdCr2Se4-ZnSe interfaces. Appl. Phys. Lett. 82, 1422–1424 (2003).

    Article  CAS  Google Scholar 

  40. Golik, L. L., Kun'kova, Z. E. & Heide, C. Mechanisms for strong nonlinearities in the Faraday rotation and absorption in the ferromagnetic semiconductor CdCr2Se4 . J. Appl. Phys. 87, 6472–6474 (2000).

    Article  CAS  Google Scholar 

  41. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–51 (1996).

    Article  CAS  Google Scholar 

  43. Shanti, N., Mahadevan, P. & Sarma, D. D. Electronic band structure of cadmium chromium chalcogenide spinels: CdCr2S4 and CdCr2Se4 . J. Solid State Chem. 155, 198–205 (2000).

    Article  Google Scholar 

  44. Stroud, R. M., et al. Reduction of spin injection efficiency by interface defect scattering in ZnMnSe/AlGaAs–GaAs spin-polarized light-emitting diodes. Phys. Rev. Lett. 89, 166602 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by ONR (N0001404WX20052), the DARPA Spins in Semiconductors program (K920/00), NSF (ECS0224225), and core programs at the Naval Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berend T. Jonker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kioseoglou, G., Hanbicki, A., Sullivan, J. et al. Electrical spin injection from an n-type ferromagnetic semiconductor into a III–V device heterostructure. Nature Mater 3, 799–803 (2004). https://doi.org/10.1038/nmat1239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing