Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Composite mesostructures by nano-confinement

Abstract

In a physically confined environment, interfacial interactions, symmetry breaking, structural frustration and confinement-induced entropy loss can play dominant roles in determining molecular organization. Here we present a systematic study of the confined assembly of silica–surfactant composite mesostructures within cylindrical nanochannels of varying diameters. Using exactly the same precursors and reaction conditions that form the two-dimensional hexagonal SBA-15 mesostructured thin film, unprecedented silica mesostructures with chiral mesopores such as single- and double-helical geometries spontaneously form inside individual alumina nanochannels. On tightening the degree of confinement, a transition is observed in the mesopore morphology from a coiled cylindrical to a spherical cage-like geometry. Self-consistent field calculations carried out to account for the observed mesostructures accord well with experiment. The mesostructures produced by confined syntheses are useful as templates for fabricating highly ordered mesostructured nanowires and nanowire arrays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SEM images of PAA membrane and TEM images of free-standing mesoporous silica fibres and silver mesostructured nanowires.
Figure 2: TEM image simulation and comparison with actual images of concentric three-layer stacked-doughnuts structure.
Figure 3: Representative TEM images of mesostructures formed inside alumina nanochannels with differing confinement dimensions.
Figure 4
Figure 5: Schematic structural correlation between mesostructure formed on a flat substrate and that within a cylindrical confinement.
Figure 6: Simulated structures of the confined self-assembly in cylindrical confinement with varying cylinder diameter (D).

Similar content being viewed by others

References

  1. Kellogg, G. J. et al. Observed surface energy effects in confined diblock copolymers. Phys. Rev. Lett. 76, 2503–2506 (1996).

    Article  CAS  Google Scholar 

  2. Chen, H. Y. & Fredrickson, G. H. Morphologies of ABC triblock copolymer thin films. J. Chem. Phys. 116, 1137–1146 (2002).

    Article  CAS  Google Scholar 

  3. Lambooy, P. et al. Observed frustration in confined block-copolymers. Phys. Rev. Lett. 72, 2899–2902 (1994).

    Article  CAS  Google Scholar 

  4. Zhu, S. et al. Confinement-induced miscibility in polymer blends. Nature 400, 49–51 (1999).

    Article  CAS  Google Scholar 

  5. Sevink, G. J. A., Zvelindovsky, A. V., Fraaije, J. G. E. M. & Huinink, H. P. Morphology of symmetric block copolymer in a cylindrical pore. J. Chem. Phys. 115, 8226–8230 (2001).

    Article  CAS  Google Scholar 

  6. Zhao, D. Y., Huo, Q. S., Feng, J. L., Chmelka, B. F. & Stucky, G. D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J. Am. Chem. Soc. 120, 6024–6036 (1998).

    Article  CAS  Google Scholar 

  7. Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  8. Ying, J. Y., Mehnert, C. P. & Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Edn 38, 56–77 (1999).

    Article  CAS  Google Scholar 

  9. Tsai, C. Y., Tam, S. Y., Lu, Y. F. & Brinker, C. J. Dual-layer asymmetric microporous silica membranes. J. Membrane Sci. 169, 255–268 (2000).

    Article  CAS  Google Scholar 

  10. Yang, P. D. et al. Mirrorless lasing from mesostructured waveguides patterned by soft lithography. Science 287, 465–467 (2000).

    Article  CAS  Google Scholar 

  11. Masuda, H. & Satoh, M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J. Appl. Phys. 35, L126–L129 (1996).

    Article  CAS  Google Scholar 

  12. Lu, Y. F. et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature 389, 364–368 (1997).

    Article  CAS  Google Scholar 

  13. Zhao, D. et al. Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380–1385 (1998).

    Article  CAS  Google Scholar 

  14. Alberius, P. C. A. et al. General predictive syntheses of cubic, hexagonal, and lamellar silica and titania mesostructured thin films. Chem. Mater. 14, 3284–3294 (2002).

    Article  CAS  Google Scholar 

  15. Crepaldi, E. L. et al. Controlled formation of highly organized mesoporous titania thin films: From mesostructured hybrids to mesoporous nanoanatase TiO2 . J. Am. Chem. Soc. 125, 9770–9786 (2003).

    Article  CAS  Google Scholar 

  16. Brinker, C. J., Lu, Y. F., Sellinger, A. & Fan, H. Y. Evaporation-induced self-assembly: nanostructures made easy. Adv. Mater. 11, 579–585 (1999).

    Article  CAS  Google Scholar 

  17. Joo, S. H., Ryoo, R., Kruk, M. & Jaroniec, M. Evidence for general nature of pore interconnectivity in 2-dimensional hexagonal mesoporous silicas prepared using block copolymer templates. J. Phys. Chem. B 106, 4640–4646 (2002).

    Article  CAS  Google Scholar 

  18. Holmqvist, P., Alexandridis, P. & Lindman, B. Modification of the microstructure in block copolymer–water–'oil' systems by varying the copolymer composition and the 'oil' type: Small-angle X-ray scattering and deuterium-NMR investigation. J. Phys. Chem. B 102, 1149–1158 (1998).

    Article  CAS  Google Scholar 

  19. Matsen, M. W. Phase-behavior of block-copolymer homopolymer blends. Macromolecules 28, 5765–5773 (1995).

    Article  CAS  Google Scholar 

  20. Schmid, F. Self-consistent-field theories for complex fluids. J. Phys. Condensed Matter 10, 8105–8138 (1998).

    Article  CAS  Google Scholar 

  21. Janert, P. K. & Schick, M. Phase behavior of binary homopolymer/diblock blends: Temperature and chain length dependence. Macromolecules 31, 1109–1113 (1998).

    Article  CAS  Google Scholar 

  22. Fasolka, M. J. & Mayes, A. M. Block copolymer thin films: Physics and applications. Annu. Rev. Mater. Res. 31, 323–355 (2001).

    Article  CAS  Google Scholar 

  23. Jirage, K. B., Hulteen, J. C. & Martin, C. R. Nanotubule-based molecular-filtration membranes. Science 278, 655–658 (1997).

    Article  CAS  Google Scholar 

  24. Yamaguchi, A. et al. Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nature Mater. 3, 337–341 (2004).

    Article  CAS  Google Scholar 

  25. Lu, Q. Y., Gao, F., Komarneni, S. & Mallouk, T. E. Ordered SBA-15 nanorod arrays inside a porous alumina membrane. J. Am. Chem. Soc. 126, 8650–8651 (2004).

    Article  CAS  Google Scholar 

  26. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

    Article  CAS  Google Scholar 

  27. Wu, Y. Y., Fan, R. & Yang, P. D. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2, 83–86 (2002).

    Article  CAS  Google Scholar 

  28. Bjork, M. T. et al. One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002).

    Article  Google Scholar 

  29. Gudiksen, M. S., Lauhon, L. J., Wang, J., Smith, D. C. & Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002).

    Article  CAS  Google Scholar 

  30. Maurits, N. M. & Fraaije, J. G. E. M. Mesoscopic dynamics of copolymer melts: From density dynamics to external potential dynamics using nonlocal kinetic coupling. J. Chem. Phys. 107, 5879–5889 (1997).

    Article  CAS  Google Scholar 

  31. Fredrickson, G. H., Ganesan, V. & Drolet, F. Field-theoretic computer simulation methods for polymers and complex fluids. Macromolecules 35, 16–39 (2002).

    Article  CAS  Google Scholar 

  32. Sides, S. W. & Fredrickson, G. H. Parallel algorithm for numerical self-consistent field theory simulations of block copolymer structure. Polymer 44, 5859–5866 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under award number DMR 01-20967 and award number DMR 02-33728, and partially supported by the MRSEC Program of the National Science Foundation under award no. DMR 00-80034 and by an IBM Faculty Award. We thank R. C. Hayward and T. Livneh for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galen D. Stucky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 5108 kb)

Supplementary Information, Fig. S3

Supplementary Information, Fig. S4

Supplementary Information, Fig. S5

Supplementary Information, Fig. S6

Supplementary Information, Fig. S7

Supplementary Information, Fig. S8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Cheng, G., Katsov, K. et al. Composite mesostructures by nano-confinement. Nature Mater 3, 816–822 (2004). https://doi.org/10.1038/nmat1230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing