Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Molecular time machines

The first gene involved in mammalian circadian timekeeping has been identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Schwartz, W.J. Understanding circadian clocks: from c-fos to fly balls. Ann. Neurol. 41 289–297 (1997).

    Article  CAS  Google Scholar 

  2. Klein, D., Moore, R.Y. & Reppert, S. M., eds. Suprachiasmatic nucleus: the mind's clock (Oxford, New York, 1991).

    Google Scholar 

  3. Welsh, D. W., Logothetis, D. E., Meister, M. & Reppert, S.M. Individual neurons dissociated from rat suprachiasmatic nucleus express independently-phased circadian firing rhythms. Neuron 14, 697–706 (1995).

    Article  CAS  Google Scholar 

  4. Schwartz, W. J., Aronin, N., Takeuchi, J., Bennett, M.R. & Peters, R.V. Towards a molecular biology of the suprachiasmatic nucleus: photic and temporal regulation of c-fos gene expression. Semin. Neurosci. 7, 53–60 (1995).

    Article  CAS  Google Scholar 

  5. Inouye, S.-I.T., Takahashi, J.S., Wollnik, F. & Turek, F.W. Inhibitor of protein synthesis phase shifts a circadian pacemaker in mammalian SCN. Am. J. Physiol. 255, R1055–R1058 (1988).

    CAS  PubMed  Google Scholar 

  6. King, D.P. et al. Positional cloning of the mouse circadian Clock gene. Cell 89, 641–653 (1997).

    Article  CAS  Google Scholar 

  7. Antoch, M.P. et al. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89, 655–667 (1997).

    Article  CAS  Google Scholar 

  8. Dunlap, J.C. Genetic and molecular analysis of circadian rhythms. Annu. Rev. Genet. 30, 579–601 (1996).

    Article  CAS  Google Scholar 

  9. Crosthwaite, S.K., Dunlap, J.C. & Loros, J.J. Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity. Science 276, 763–769 (1997).

    Article  CAS  Google Scholar 

  10. Ralph, M.R. & Menaker, M. A mutation of the circadian system in golden hamsters. Science 241, 1225–1227 (1988).

    Article  CAS  Google Scholar 

  11. Vitaterna, M.H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719–725 (1994).

    Article  CAS  Google Scholar 

  12. Sauman, I. & Reppert, S. M. Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of period protein regulation. Neuron 17, 889–900 (1996).

    Article  CAS  Google Scholar 

  13. Tosini, G. & Menaker, M. Circadian rhythms in cultured mammalian retina. Science 272, 419–421 (1996).

    Article  CAS  Google Scholar 

  14. Czeisler, C.A. The effect of light on the human circadian pacemaker. In Circadian clocks and their adjustment (ed. Chadwick, D. J. & Ackrill, K.) 254–302 (John Wiley, Chichester, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, W. Molecular time machines. Nat Med 3, 718–719 (1997). https://doi.org/10.1038/nm0797-718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0797-718

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing