Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tailoring the genome: the power of genetic approaches

Abstract

In the last century, genetics has developed into one of the most powerful tools for addressing basic questions concerning inheritance, development, individual and social operations and death. Here we summarize the current approaches to these questions in four of the most advanced models organisms: Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila melanogaster (fly) and Mus musculus (mouse). The genomes of each of these four models have been sequenced, and all have well developed methods of efficient genetic manipulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of typical recessive chemical mutagenesis screens in the model systems discussed: yeast, worm, fly, mouse and ES cell.

Similar content being viewed by others

References

  1. Mendel, G. Versuche uber Pflanzen-Hybriden. Verhandlungen des naturforschenden Vereines in Brunn 4, 3–47 (1866).

    Google Scholar 

  2. Morgan, T. Sex-limited inheritance in Drosophila. Science 32, 120–122 (1910).

    Article  CAS  PubMed  Google Scholar 

  3. Muller, H. Artificial transmutation of the gene. Science 66, 84–87 (1927).

    Article  CAS  PubMed  Google Scholar 

  4. DeMarini, D.M. et al. Specific-locus mutations induced in eukaryotes (especially mammalian cells) by radiation and chemicals: a perspective. Mutat. Res. 220, 11–29 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. O'Kane, C.J. & Gehring, W.J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. USA 84, 9123–9127 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Craig, N.L., Craigie, R., Gellert, M. & Lambowitz, A.M. (eds) Mobile DNA II. (ASM, Washington DC, 2002).

    Book  Google Scholar 

  7. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo–derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Doetschman, T., Maeda, N. & Smithies, O. Targeted mutation of the Hprt gene in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 85, 8583–8587 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herron, B.J. et al. Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat. Genet. 30, 185–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Wicks, S.R., Yeh, R.T., Gish, W.R., Waterston, R.H. & Plasterk, R.H. Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nat. Genet. 28, 160–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Winzeler, E.A. et al. Direct allelic variation scanning of the yeast genome. Science 281, 1194–1197 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Adams, M.D. & Sekelsky, J.J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nat. Rev. Genet. 3, 189–198 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. St Johnston, D. The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3, 176–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Townley, D.J., Avery, B.J., Rosen, B. & Skarnes, W.C. Rapid sequence analysis of gene trap integrations to generate a resource of insertional mutations in mice. Genome Res. 7, 293–298 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Kuspa, A. & Loomis, W.F. Tagging developmental genes in Dictyostelium by restriction enzyme–mediated integration of plasmid DNA. Proc. Natl. Acad. Sci. USA 89, 8803–8807 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nusse, R. & Varmus, H.E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Guthrie, C. & Fink, G.R. Guide to Yeast Genetics and Molecular Biology. (Academic, San Diego, 1991).

    Google Scholar 

  18. Goffeau, A. et al. Life with 6000 genes. Science 274, 546, 563–547 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Garfinkel, D.J., Mastrangelo, M.F., Sanders, N.J., Shafer, B.K. & Strathern, J.N. Transposon tagging using Ty elements in yeast. Genetics 120, 95–108 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, V., Chou, K.N., Lashkari, D., Botstein, D. & Brown, P.O. Functional analysis of the genes of yeast chromosome V by genetic footprinting. Science 274, 2069–2074 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Seifert, H.S., Chen, E.Y., So, M. & Heffron, F. Shuttle mutagenesis: a method of transposon mutagenesis for Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83, 735–739 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bachman, N., Biery, M.C., Boeke, J.D. & Craig, N.L. Tn7-mediated mutagenesis of Saccharomyces cerevisiae genomic DNA in vitro. Methods Enzymol. 350, 230–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Burns, N. et al. Large-scale analysis of gene expression, protein localization, and gene disruption in Saccharomyces cerevisiae. Genes Dev. 8, 1087–1105 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. van Leeuwen, F. & Gottschling, D.E. Assays for gene silencing in yeast. Methods Enzymol. 350, 165–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Coulson, A., Waterston, R., Kiff, J., Sulston, J. & Kohara, Y. Genome linking with yeast artificial chromosomes. Nature 335, 184–186 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Mello, C. & Fire, A. DNA transformation. Methods Cell. Biol. 48, 451–482 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Plasterk, R.H. Reverse genetics: from gene sequence to mutant worm. Methods Cell. Biol. 48, 59–80 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Zwaal, R.R., Broeks, A., van Meurs, J., Groenen, J.T. & Plasterk, R.H. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc. Natl. Acad. Sci. USA 90, 7431–7435 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Montgomery, M.K., Xu, S. & Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95, 15502–15507 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Zipperlen, P., Fraser, A.G., Kamath, R.S., Martinez-Campos, M. & Ahringer, J. Roles for 147 embryonic lethal genes on C. elegans chromosome I identified by RNA interference and video microscopy. EMBO J. 20, 3984–3992 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. & Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Stein, L., Sternberg, P., Durbin, R., Thierry-Mieg, J. & Spieth, J. WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Res. 29, 82–86 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, S.K. et al. A gene expression map for Caenorhabditis elegans. Science 293, 2087–2092 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Davy, A. et al. A protein–protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep. 2, 821–828 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bessereau, J.L. et al. Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413, 70–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  CAS  PubMed  Google Scholar 

  45. Siegfried, E., Wilder, E.L. & Perrimon, N. Components of wingless signalling in Drosophila. Nature 367, 76–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Simon, M.A., Bowtell, D.D., Dodson, G.S., Laverty, T.R. & Rubin, G.M. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716 (1991).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, P. & Spradling, A.C. Efficient and dispersed local P element transposition from Drosophila females. Genetics 133, 361–373 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Teeter, K. et al. Haplotype dimorphism in a SNP collection from Drosophila melanogaster. J. Exp. Zool. 288, 63–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Hoskins, R.A. et al. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster. Genome Res. 11, 1100–1113 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Berger, J. et al. Genetic mapping with SNP markers in Drosophila. Nat. Genet. 29, 475–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Martin, S.G., Dobi, K.C. & St Johnston, D. A rapid method to map mutations in Drosophila. Genome Biol. 2, RESEARCH0036 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  53. Golic, K.G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

    Article  CAS  PubMed  Google Scholar 

  54. Duffy, J.B., Harrison, D.A. & Perrimon, N. Identifying loci required for follicular patterning using directed mosaics. Development 125, 2263–2271 (1998).

    CAS  PubMed  Google Scholar 

  55. Rorth, P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. USA 93, 12418–12422 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xu, T., Wang, W., Zhang, S., Stewart, R.A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    CAS  PubMed  Google Scholar 

  57. Perrimon, N., Lanjuin, A., Arnold, C. & Noll, E. Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by P-element–induced mutations. Genetics 144, 1681–1692 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Stowers, R.S. & Schwarz, T.L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Newsome, T.P., Asling, B. & Dickson, B.J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  60. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15050–15055 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Furlong, E.E., Profitt, D. & Scott, M.P. Automated sorting of live transgenic embryos. Nat. Biotechnol. 19, 153–156 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  PubMed  Google Scholar 

  63. Misra, S. et al. Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol. 3, RESEARCH0083.0081–0083.0022 (2002).

    Article  Google Scholar 

  64. McDonald, M.J. & Rosbash, M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. White, K.P., Rifkin, S.A., Hurban, P. & Hogness, D.S. Microarray analysis of Drosophila development during metamorphosis. Science 286, 2179–2184 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Furlong, E.E., Andersen, E.C., Null, B., White, K.P. & Scott, M.P. Patterns of gene expression during Drosophila mesoderm development. Science 293, 1629–1633 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Kennerdell, J.R. & Carthew, R.W. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95, 1017–1026 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Lam, G. & Thummel, C.S. Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr. Biol. 10, 957–963 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Kennerdell, J.R. & Carthew, R.W. Heritable gene silencing in Drosophila using double-stranded RNA. Nat. Biotechnol. 18, 896–898 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Fortier, E. & Belote, J.M. Temperature-dependent gene silencing by an expressed inverted repeat in Drosophila. Genesis 26, 240–244 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Kalidas, S. & Smith, D.P. Novel genomic cDNA hybrids produce effective RNA interference in adult Drosophila. Neuron 33, 177–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Clemens, J.C. et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ramet, M., Manfruelli, P., Pearson, A., Mathey-Prevot, B. & Ezekowitz, R.A. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416, 644–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Boutros, M., Agaisse, H. & Perrimon, N. Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell. 3, 711–722 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Rong, Y.S. & Golic, K.G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Rong, Y.S. & Golic, K.G. A targeted gene knockout in Drosophila. Genetics 157, 1307–1312 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Bellaiche, Y., Mogila, V. & Perrimon, N. I-SceI endonuclease, a new tool for studying DNA double-strand break repair mechanisms in Drosophila. Genetics 152, 1037–1044 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Roach, A., Takahashi, N., Pravtcheva, D., Ruddle, F. & Hood, L. Chromosomal mapping of mouse myelin basic protein gene and structure and transcription of the partially deleted gene in shiverer mutant mice. Cell 42, 149–155 (1985).

    Article  CAS  PubMed  Google Scholar 

  79. Yokoyama, T. et al. Conserved cysteine to serine mutation in tyrosinase is responsible for the classical albino mutation in laboratory mice. Nucleic Acids Res. 18, 7293–7298 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hebert, J.M., Rosenquist, T., Gotz, J. & Martin, G.R. FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations. Cell 78, 1017–1025 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Pennisi, D. et al. Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat. Genet. 24, 434–437 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Russell, W.L. et al. Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proc. Natl. Acad. Sci. USA 76, 5818–5819 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Justice, M.J., Noveroske, J.K., Weber, J.S., Zheng, B. & Bradley, A. Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Brinster, R.L. et al. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27, 223–231 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Palmiter, R.D. et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611–615 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  88. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. Derivation of completely cell culture–derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eggan, K. et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci. USA 98, 6209–6214 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gossler, A., Joyner, A.L., Rossant, J. & Skarnes, W.C. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244, 463–465 (1990).

    Article  Google Scholar 

  91. Stanford, W.L., Cohn, J.B. & Cordes, S.P. Gene-trap mutagenesis: past, present and beyond. Nat. Rev. Genet. 2, 756–768 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Chowdhury, K., Bonaldo, P., Torres, M., Stoykova, A. & Gruss, P. Evidence for the stochastic integration of gene trap vectors into the mouse germline. Nucleic Acids Res. 25, 1531–1536 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  PubMed  Google Scholar 

  94. Forrester, L.M. et al. An induction gene trap screen in embryonic stem cells: identification of genes that respond to retinoic acid in vitro. Proc. Natl. Acad. Sci. USA 93, 1677–1682 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Medico, E., Gambarotta, G., Gentile, A., Comoglio, P.M. & Soriano, P. A gene trap vector system for identifying transcriptionally responsive genes. Nat. Biotechnol. 19, 579–582 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Skarnes, W.C., Moss, J.E., Hurtley, S.M. & Beddington, R.S. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc. Natl. Acad. Sci. USA 92, 6592–6596 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hicks, G.G. et al. Functional genomics in mice by tagged sequence mutagenesis. Nat. Genet. 16, 338–344 (1997).

    Article  CAS  PubMed  Google Scholar 

  98. Lefebvre, V. et al. Characterization of primary cultures of chondrocytes from type II collagen/β-galactosidase transgenic mice. Matrix Biol. 14, 329–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  99. Liu, P., Jenkins, N.A. & Copeland, N.G. Efficient Cre-loxP–induced mitotic recombination in mouse embryonic stem cells. Nat. Genet 30, 66–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Harrington, J.J. et al. Creation of genome-wide protein expression libraries using random activation of gene expression. Nat. Biotechnol. 19, 440–445 (2001).

    Article  PubMed  Google Scholar 

  101. Nagy, A. Cre recombinase: the universal reagent for genome tailoring. Genesis 26, 99–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Dymecki, S.M. Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 6191–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rodriguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Belteki, G., Gertsenstein, M., Ow, D.W. & Nagy, A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing PhiC31 integrase. Nat. Biotechnol. (in press) (2003).

  105. Lewandoski, M. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Kwan, K.M. Conditional alleles in mice: practical considerations for tissue-specific knockouts. Genesis 32, 49–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Gossen, M., Bonin, A.L. & Bujard, H. Control of gene activity in higher eukaryotic cells by prokaryotic regulatory elements. Trends Biochem. Sci. 18, 471–475 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Saam, J.R. & Gordon, J.I. Inducible gene knockouts in the small intestinal and colonic epithelium. J. Biol. Chem. 274, 38071–38082 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Schwikowski, B., Uetz, P. & Fields, S. A network of protein–protein interactions in yeast. Nat. Biotechnol. 18, 1257–1261 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Guo, H. et al. Group II introns designed to insert into therapeutically relevant DNA target sites in human cells. Science 289, 452–457. (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Stockwell, B.R., Haggarty, S.J. & Schreiber, S.L. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol. 6, 71–83. (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Chen, Y. et al. Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nat. Genet. 24, 314–317 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Munroe, R.J. et al. Mouse mutants from chemically mutagenized embryonic stem cells. Nat. Genet. 24, 318–321 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. You, Y. et al. Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nat. Genet. 15, 285–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Lefebvre, L., Dionne, N., Karaskova, J., Squire, J.A. & Nagy, A. Selection for transgene homozygosity in embryonic stem cells results in extensive loss of heterozygosity. Nat. Genet. 27, 257–258 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andras Nagy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, A., Perrimon, N., Sandmeyer, S. et al. Tailoring the genome: the power of genetic approaches. Nat Genet 33 (Suppl 3), 276–284 (2003). https://doi.org/10.1038/ng1115

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing