Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: therapeutic RNA interference—how far from the neurology clinic?

Abstract

As an evolutionarily conserved cellular pathway to regulate endogenous gene expression, RNA interference (RNAi) has been implicated in diverse biological processes. Biologists now routinely exploit this cellular pathway to suppress virtually any target gene in a sequence-specific manner, including dominantly acting genes that cause incurable neurodegenerative disorders. The development of RNAi as potential therapy for such diseases has generated considerable interest, partly because of the success of early studies of therapeutic RNAi in rodent models for a range of neurodegenerative diseases. In this article, we review the progress of RNAi therapy to date, and assess the challenges ahead for the application of such therapy to neurodegenerative diseases. We discuss the various strategies that might be used to achieve this goal, outline the preclinical studies that have already been completed, and highlight the experimental questions that need to be answered before human clinical trials can begin.

Key Points

  • RNA interference (RNAi) is a naturally occurring biological pathway in which small, double-stranded RNA molecules suppress gene expression in an exquisitely sequence-specific manner

  • Exogenous manipulation of RNAi is being explored as a powerful method of silencing disease-causing genes in incurable neurological disorders

  • Preclinical trials in animal models of various neurodegenerative diseases have demonstrated the feasibility and efficacy of this approach

  • Research efforts are invested in developing viral and nonviral methods of delivering RNAi-mediating molecules to various target brain regions

  • The safety of manipulating the RNAi pathway in the brain, where it participates in synaptic function, neuronal differentiation and brain development, needs to be carefully addressed

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The process of RNA interference and its manipulation

Similar content being viewed by others

References

  1. Fire A et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811

    Article  CAS  Google Scholar 

  2. Paulson H and Gonzalez-Alegre P (2006) RNAi gets its prize. Lancet Neurol 5: 997–999

    Article  Google Scholar 

  3. Gonzalez-Alegre P (2007) Therapeutic RNA interference for neurodegenerative diseases: from promise to progress. Pharmacol Ther 114: 34–55

    Article  CAS  Google Scholar 

  4. Davidson BL and Paulson HL (2004) Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol 3: 145–149

    Article  CAS  Google Scholar 

  5. Rodriguez-Lebron E and Gonzalez-Alegre P (2006) Silencing neurodegenerative disease: bringing RNA interference to the clinic. Expert Rev Neurother 6: 223–233

    Article  CAS  Google Scholar 

  6. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297

    Article  CAS  Google Scholar 

  7. Carmell MA and Hannon GJ (2004) RNase III enzymes and the initiation of gene silencing. Nat Struct Mol Biol 11: 214–218

    Article  CAS  Google Scholar 

  8. Cullen BR (2004) Transcription and processing of human microRNA precursors. Mol Cell 16: 861–865

    Article  CAS  Google Scholar 

  9. Du T and Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132: 4645–4652

    Article  CAS  Google Scholar 

  10. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6: 376–385

    Article  CAS  Google Scholar 

  11. Meister G and Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431: 343–349

    Article  CAS  Google Scholar 

  12. Murchison EP and Hannon GJ (2004) miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 16: 223–229

    Article  CAS  Google Scholar 

  13. Tomari Y and Zamore PD (2005) Perspective: machines for RNAi. Genes Dev 19: 517–529

    Article  CAS  Google Scholar 

  14. Tomari Y and Zamore PD (2005) MicroRNA biogenesis: drosha can't cut it without a partner. Curr Biol 15: R61–R64

    Article  CAS  Google Scholar 

  15. Meister G et al. (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15: 185–197

    Article  CAS  Google Scholar 

  16. Miller VM et al. (2005) RNA interference in neuroscience: progress and challenges. Cell Mol Neurobiol 25: 1195–1207

    Article  Google Scholar 

  17. Gunsalus KC and Piano F (2005) RNAi as a tool to study cell biology: building the genome–phenome bridge. Curr Opin Cell Biol 17: 3–8

    Article  CAS  Google Scholar 

  18. Dykxhoorn DM and Lieberman J (2005) The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu Rev Med 56: 401–423

    Article  CAS  Google Scholar 

  19. Bentwich I et al. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37: 766–770

    Article  CAS  Google Scholar 

  20. Berezikov E et al. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120: 21–24

    Article  CAS  Google Scholar 

  21. Xie X et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3[prime] UTRs by comparison of several mammals. Nature 434: 338–345

    Article  CAS  Google Scholar 

  22. Lim LP et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773

    Article  CAS  Google Scholar 

  23. Jackson RJ and Standart N (2007) How do microRNAs regulate gene expression? Sci STKE 2007: re1

    Article  Google Scholar 

  24. Liu J et al. (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7: 719–723

    Article  CAS  Google Scholar 

  25. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7: 911–920

    Article  CAS  Google Scholar 

  26. Giraldez AJ et al. (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308: 833–838

    Article  CAS  Google Scholar 

  27. Jin P et al. (2004) RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 6: 1048–1053

    Article  CAS  Google Scholar 

  28. Bumcrot D et al. (2006) RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2: 711–719

    Article  CAS  Google Scholar 

  29. Shankar P et al. (2005) The prospect of silencing disease using RNA interference. JAMA 293: 1367–1373

    Article  CAS  Google Scholar 

  30. Kim DH and Rossi JJ (2007) Strategies for silencing human disease using RNA interference. Nat Rev Genet 8: 173–184

    Article  CAS  Google Scholar 

  31. Izquierdo M (2005) Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther 12: 217–227

    Article  CAS  Google Scholar 

  32. Ketzinel-Gilad M et al. (2006) RNA interference for antiviral therapy. J Gene Med 8: 933–950

    Article  CAS  Google Scholar 

  33. Paulson HL (2000) Toward an understanding of polyglutamine neurodegeneration. Brain Pathol 10: 293–299

    Article  CAS  Google Scholar 

  34. Paulson HL et al. (2000) Polyglutamine disease and neuronal cell death. Proc Natl Acad Sci USA 97: 12957–12958

    Article  CAS  Google Scholar 

  35. Gonzalez-Alegre P and Paulson HL (2004) Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci 24: 2593–2601

    Article  CAS  Google Scholar 

  36. Goodchild RE and Dauer WT (2004) Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation. Proc Natl Acad Sci USA 101: 847–852

    Article  CAS  Google Scholar 

  37. Rodriguez-Lebron E and Paulson HL (2006) Allele-specific RNA interference for neurological disease. Gene Ther 13: 576–581

    Article  CAS  Google Scholar 

  38. Gonzalez-Alegre P et al. (2003) Toward therapy for DYT1 dystonia: allele-specific silencing of mutant TorsinA. Ann Neurol 53: 781–787

    Article  CAS  Google Scholar 

  39. Gonzalez-Alegre P et al. (2005) Silencing primary dystonia: lentiviral-mediated RNA interference therapy for DYT1 dystonia. J Neurosci 25: 10502–10509

    Article  CAS  Google Scholar 

  40. Miller VM et al. (2003) Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 100: 7195–7200

    Article  CAS  Google Scholar 

  41. Schwarz DS et al. (2006) Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet 2: e140

    Article  Google Scholar 

  42. Marcotte L and Crino PB (2006) The neurobiology of the tuberous sclerosis complex. Neuromolecular Med 8: 531–546

    Article  CAS  Google Scholar 

  43. Singleton AB et al. (2003) α-Synuclein locus triplication causes Parkinson's disease. Science 302: 841

    Article  CAS  Google Scholar 

  44. Paulson H and Ammache Z (2001) Ataxia and hereditary disorders. Neurol Clin 19: 759–782, viii

    Article  CAS  Google Scholar 

  45. Humbert S and Saudou F (2002) Toward cell specificity in SCA1. Neuron 34: 669–670

    Article  CAS  Google Scholar 

  46. Matilla A et al. (1998) Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation. J Neurosci 18: 5508–5516

    Article  CAS  Google Scholar 

  47. Zu T et al. (2004) Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 24: 8853–8861

    Article  CAS  Google Scholar 

  48. Xia H et al. (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10: 816–820

    Article  CAS  Google Scholar 

  49. Ralph GS et al. (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11: 429–433

    Article  CAS  Google Scholar 

  50. Raoul C et al. (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11: 423–428

    Article  CAS  Google Scholar 

  51. Saito Y et al. (2005) Transgenic small interfering RNA halts amyotrophic lateral sclerosis in a mouse model. J Biol Chem 280: 42826–42830

    Article  CAS  Google Scholar 

  52. Xia X et al. (2006) Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo. Neurobiol Dis 23: 578–586

    Article  CAS  Google Scholar 

  53. Sapru MK et al. (2006) Silencing of human α-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol 198: 382–390

    Article  CAS  Google Scholar 

  54. Harper SQ et al. (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc Natl Acad Sci USA 102: 5820–5825

    Article  CAS  Google Scholar 

  55. Rodriguez-Lebron E et al. (2005) Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington's disease transgenic mice. Mol Ther 12: 618–633

    Article  CAS  Google Scholar 

  56. Machida Y et al. (2006) rAAV-mediated shRNA ameliorated neuropathology in Huntington disease model mouse. Biochem Biophys Res Commun 343: 190–197

    Article  CAS  Google Scholar 

  57. Wang YL et al. (2005) Clinico-pathological rescue of a model mouse of Huntington's disease by siRNA. Neurosci Res 53: 241–249

    Article  CAS  Google Scholar 

  58. Singer O et al. (2005) Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 8: 1343–1349

    Article  CAS  Google Scholar 

  59. Hong CS et al. (2006) Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer's disease-related amyloid-β peptide in vivo. Gene Ther 13: 1068–1079

    Article  CAS  Google Scholar 

  60. Pfeifer A et al. (2006) Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J Clin Invest 116: 3204–3210

    Article  CAS  Google Scholar 

  61. Davidson BL and Breakefield XO (2003) Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 4: 353–364

    Article  CAS  Google Scholar 

  62. Fountaine TM et al. (2005) Delivering RNA interference to the mammalian brain. Curr Gene Ther 5: 399–410

    Article  CAS  Google Scholar 

  63. Sah DW (2006) Therapeutic potential of RNA interference for neurological disorders. Life Sci 79: 1773–1780

    Article  CAS  Google Scholar 

  64. Grimm D et al. (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441: 537–541

    Article  CAS  Google Scholar 

  65. Alvarez VA et al. (2006) Retraction of synapses and dendritic spines induced by off-target effects of RNA interference. J Neurosci 26: 7820–7825

    Article  CAS  Google Scholar 

  66. Stark GR et al. (1998) How cells respond to interferons. Annu Rev Biochem 67: 227–264

    Article  CAS  Google Scholar 

  67. Bridge AJ et al. (2003) Induction of an interferon response by RNAi vectors in mammalian cells. Nat Genet 34: 263–264

    Article  CAS  Google Scholar 

  68. Jackson AL et al. (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12: 1179–1187

    Article  CAS  Google Scholar 

  69. Judge AD et al. (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23: 457–462

    Article  CAS  Google Scholar 

  70. Pebernard S and Iggo RD (2004) Determinants of interferon-stimulated gene induction by RNAi vectors. Differentiation 72: 103–111

    Article  CAS  Google Scholar 

  71. Sledz CA et al. (2003) Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5: 834–839

    Article  CAS  Google Scholar 

  72. Heidel JD et al. (2004) Lack of interferon response in animals to naked siRNAs. Nat Biotechnol 22: 1579–1582

    Article  CAS  Google Scholar 

  73. Birmingham A et al. (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3: 199–204

    Article  CAS  Google Scholar 

  74. Qiu S et al. (2005) A computational study of off-target effects of RNA interference. Nucleic Acids Res 33: 1834–1847

    Article  CAS  Google Scholar 

  75. Khvorova A et al. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115: 209–216

    Article  CAS  Google Scholar 

  76. Schwarz DS et al. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115: 199–208

    Article  CAS  Google Scholar 

  77. Zeng Y et al. (2003) MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc Natl Acad Sci USA 100: 9779–9784

    Article  CAS  Google Scholar 

  78. Miller N and Whelan J (1997) Progress in transcriptionally targeted and regulatable vectors for genetic therapy. Hum Gene Ther 8: 803–815

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work on RNA interference in the authors' laboratories has been funded by grants from American Federation for Aging Research (HLP), Dystonia Medical Research Foundation (PG) and NIH (PO1 NS050210, directed by Beverly Davidson, University of Iowa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry L Paulson.

Ethics declarations

Competing interests

HL Paulson has received honoraria from Athena Diagnostics and has acted as a consultant for Sirna Therapeutics. P Gonzalez-Alegre declared he has no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez-Alegre, P., Paulson, H. Technology Insight: therapeutic RNA interference—how far from the neurology clinic?. Nat Rev Neurol 3, 394–404 (2007). https://doi.org/10.1038/ncpneuro0551

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing