Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diversity-oriented synthesis: exploring the intersections between chemistry and biology

Abstract

Diversity-oriented synthesis (DOS) is an emerging field involving the synthesis of combinatorial libraries of diverse small molecules for biological screening. Rather than being directed toward a single biological target, DOS libraries can be used to identify new ligands for a variety of targets. Several different strategies for library design have been developed to target the biologically relevant regions of chemical structure space. DOS has provided powerful probes to investigate biological mechanisms and also served as a new driving force for advancing synthetic organic chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 7: Separation platforms and library synthesis techniques in diversity-oriented synthesis.
Figure 1: Example of principal component analysis comparison of synthetic drugs and natural products.
Figure 2: Uretupamines, function-selective suppressors of the yeast signaling protein Ure2p.
Figure 3: Tubacin and histacin, paralog-selective histone deacetylase family inhibitors.
Figure 4: Small-molecule modulation of stem cell differentiation.
Figure 5: Fexaramine, a potent non-steroidal agonist of the farnesoid X receptor.
Figure 6: IIA6B17, a small-molecule inhibitor of the Myc-Max protein-protein interaction.

Similar content being viewed by others

References

  1. Potuzak, J.S., Moilanen, S.B. & Tan, D.S. Discovery and applications of small molecule probes for studying biological processes. Biotechnol. Genet. Eng. Rev. 21, 11–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Schreiber, S.L. The small-molecule approach to biology. Chem. Eng. News 81, 51–61 (3 Mar 2003).

    Article  Google Scholar 

  3. Peterson, J.R. & Mitchison, T.J. Small molecules, big impact. A history of chemical inhibitors and the cytoskeleton. Chem. Biol. 9, 1275–1285 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Flaumenhaft, R. & Sim, D.S. The platelet as a model for chemical genetics. Chem. Biol. 10, 481–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. MacRae, C.A. & Peterson, R.T. Zebrafish-based small molecule discovery. Chem. Biol. 10, 901–908 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Koh, B. & Crews, C.M. Chemical genetics: a small molecule approach to neurobiology. Neuron 36, 563–566 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Walters, W.P. & Namchuk, M. Designing screens: how to make your hits a hit. Nat. Rev. Drug Discov. 2, 259–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Feher, M. & Schmidt, J.M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci. 43, 218–227 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Haggarty, S.J. The principle of complementarity: chemical versus biological space. Curr. Opin. Chem. Biol. 9, 296–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Merrifield, R.B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J. Am. Chem. Soc. 85, 2149–2154 (1963).

    Article  CAS  Google Scholar 

  11. Tzschucke, C.C. et al. Modern separation techniques for efficient workup in organic synthesis. Angew. Chem. Int. Ed. Engl. 41, 3964–4000 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, J.K. & Schreiber, S.L. Combinatorial synthesis and multidimensional NMR spectroscopy: an approach to understanding protein-ligand interactions. Angew. Chem. Int. Ed. Engl. 34, 953–969 (1995).

    Article  CAS  Google Scholar 

  13. Liu, D.R. & Schultz, P.G. Generating new molecular function: a lesson from nature. Angew. Chem. Int. Ed. Engl. 38, 37–54 (1999).

    CAS  Google Scholar 

  14. Furka, Á ., Sebestyén, F., Asgedom, M. & Dibó, G. General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Protein Res. 37, 487–493 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Lam, K.S. et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354, 82–84 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Burdine, L. & Kodadek, T. Target identification in chemical genetics: the (often) missing link. Chem. Biol. 11, 593–597 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, X.S., Chan, T.-F., Zhou, H.H. Genetic and genomic approaches to identify and study the targets of bioactive small molecules. Chem. Biol. 11, 609–618 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Mitsopoulos, G., Walsh, D.P. & Chang, Y.-T. Tagged library approach to chemical genomics and proteomics. Curr. Opin. Chem. Biol. 8, 26–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Erlanson, D.A., McDowell, R.S. & O'Brien, T. Fragment-based drug discovery. J. Med. Chem. 47, 3463–3482 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Shoichet, B.K. Virtual screening of chemical libraries. Nature 432, 862–865 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kitchen, D.B., Decornez, H., Furr, J.R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Dobson, C.M. Chemical space and biology. Nature 432, 824–828 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Bohacek, R.S., McMartin, C. & Guida, W.C. The art and practice of structure-based drug design: a molecular modeling perspective. Med. Res. Rev. 16, 3–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Selzer, P., Roth, H.-J., Ertl, P. & Schuffenhauer, A. Complex molecules: do they add value? Curr. Opin. Chem. Biol. 9, 310–316 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Newman, D.J., Cragg, G.M. & Snader, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 66, 1022–1037 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Evans, B.E. et al. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 31, 2235–2246 (1988).

    Article  CAS  PubMed  Google Scholar 

  27. DeSimone, R.W., Currie, K.S., Mitchell, S.A., Darrow, J.W. & Pippin, D.A. Privileged structures: applications in drug discovery. Comb. Chem. High Throughput Screen. 7, 473–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Balamurugan, R., Dekker, F.J., Waldmann, H. Design of compound libraries based on natural product scaffolds and protein structure similarity clustering (PSSC). Mol. Biosys. 1, 36–45 (2005).

    Article  CAS  Google Scholar 

  29. Horton, D.A., Bourne, G.T. & Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev. 103, 893–930 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Lajiness, M.S., Vieth, M. & Erickson, J. Molecular properties that influence oral drug-like behavior. Curr. Opin. Drug Discov. Dev. 7, 470–477 (2004).

    CAS  Google Scholar 

  31. Veber, D.F. et al. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  33. Kahne, D., Leimkuhler, C., Lu, W. & Walsh, C. Glycopeptide and lipoglycopeptide antibiotics. Chem. Rev. 105, 425–448 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Arkin, M.R. & Wells, J.A. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Pagliaro, L. et al. Emerging classes of protein–protein interaction inhibitors and new tools for their development. Curr. Opin. Chem. Biol. 8, 442–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Lepourcelet, M. et al. Small-molecule antagonists of the oncogenic Tcf/β-catenin protein complex. Cancer Cell 5, 91–102 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Shang, S. & Tan, D.S. Advancing chemistry and biology through diversity-oriented synthesis of natural product-like libraries. Curr. Opin. Chem. Biol. 9, 248–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Tan, D.S. Current progress in natural product-like libraries for discovery screening. Comb. Chem. High Throughput Screen. 7, 631–643 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Fergus, S., Bender, A. & Spring, D.R. Assessment of structural diversity in combinatorial synthesis. Curr. Opin. Chem. Biol. 9, 304–309 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Xue, L., Stahura, F.L. & Bajorath, J. Cell-based partitioning. Methods Mol. Biol. 275, 279–289 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Haggarty, S.J., Clemons, P.A. & Schreiber, S.L. Chemical genomic profiling of biological networks using graph theory and combinations of small molecule perturbations. J. Am. Chem. Soc. 125, 10543–10545 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Haggarty, S.J., Koeller, K.M., Wong, J.C., Butcher, R.A. & Schreiber, S.L. Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays. Chem. Biol. 10, 383–396 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, Y-k. et al. Relationship of stereochemical and skeletal diversity of small molecules to cellular measurement space. J. Am. Chem. Soc. 126, 14740–14745 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Wipf, P., Kendall, C. & Stephenson, C.R.J. Dimethylzinc-mediated additions of alkenylzirconocenes to aldimines. New methodologies for allylic amine and C-cyclopropylalkylamine syntheses. J. Am. Chem. Soc. 125, 761–768 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Wipf, P., Stephenson, C.R.J. & Walczak, M.A.A. Diversity-oriented synthesis of azaspirocycles. Org. Lett. 6, 3009–3012 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Itami, K., Mineno, M., Muraoka, N. & Yoshida, J. Sequential assembly strategy for tetrasubstituted olefin synthesis using vinyl 2-pyrimidyl sulfide as a platform. J. Am. Chem. Soc. 126, 11778–11779 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Itami, K., Kamei, T. & Yoshida, J. Diversity-oriented synthesis of tamoxifen-type tetrasubstituted olefins. J. Am. Chem. Soc. 125, 14670–14671 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Pulici, M., Cervi, G., Martina, K. & Quartieri, F. Use of multicomponent, domino, and other one-pot syntheses on solid phase: powerful tools for the generation of libraries of diverse and complex compounds. Comb. Chem. High Throughput Screen. 6, 693–727 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Young, I.S. & Kerr, M.A. A homo [3 + 2] dipolar cycloaddition: the reaction of nitrones with cyclopropanes. Angew. Chem. Int. Ed. Engl. 42, 3023–3026 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Young, I.S. & Kerr, M.A. Three-component homo 3+2 dipolar cycloaddition. A diversity-oriented synthesis of tetrahydro-1,2-oxazines and FR900482 skeletal congeners. Org. Lett. 6, 139–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Tailor, J. & Hall, D.G. Tandem aza[4 + 2]/allylboration: a novel multicomponent reaction for the stereocontrolled synthesis of α-hydroxyalkyl piperidine derivatives. Org. Lett. 2, 3715–3718 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Toure, B.B., Hoveyda, H.R., Tailor, J., Ulaczyk-Lesanko, A. & Hall, D.G. A three-component reaction for diversity-oriented synthesis of polysubstituted piperidines: solution and solid-phase optimization of the first tandem aza[4+2]/allylboration. Chem. Eur. J. 9, 466–474 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Burke, M.D. & Schreiber, S.L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. Engl. 43, 46–58 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Sutherlin, D.P. & Armstrong, R.W. Synthesis of 12 stereochemically and structurally diverse C-trisaccharides. J. Org. Chem. 62, 5267–5283 (1997).

    Article  CAS  Google Scholar 

  55. Annis, D.A., Helluin, O. & Jacobsen, E.N. Stereochemistry as a diversity element: Solid-phase synthesis of cyclic RGD peptide derivatives by asymmetric catalysis. Angew. Chem. Int. Ed. Engl. 37, 1907–1909 (1998).

    Article  CAS  Google Scholar 

  56. Harrison, B.A., Gierasch, T.M., Neilan, C., Pasternak, G.W. & Verdine, G.L. High-affinity mu opioid receptor ligands discovered by the screening of an exhaustively stereodiversified library of 1,5-enediols. J. Am. Chem. Soc. 124, 13352–13353 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Taylor, S.J., Taylor, A.M. & Schreiber, S.L. Synthetic strategy toward skeletal diversity via solid-supported, otherwise unstable reactive intermediates. Angew. Chem. Int. Ed. Engl. 43, 1681–1685 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Oguri, H. & Schreiber, S.L. Skeletal diversity via a folding pathway: synthesis of indole alkaloid-like skeletons. Org. Lett. 7, 47–50 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Stockwell, B.R., Haggarty, S.J. & Schreiber, S.L. High-throughput screening of small molecules in miniaturized mammalian cell-based assays involving post-translational modifications. Chem. Biol. 6, 71–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Kuruvilla, F.G., Shamji, A.F., Sternson, S.M., Hergenrother, P.J. & Schreiber, S.L. Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416, 653–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Sternson, S.M., Louca, J.B., Wong, J.C. & Schreiber, S.L. Split-pool synthesis of 1,3-dioxanes leading to arrayed stock solutions of single compounds sufficient for multiple phenotypic and protein-binding assays. J. Am. Chem. Soc. 123, 1740–1747 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Walsh, D.P. & Chang, Y.T. Recent advances in small molecule microarrays: applications and technology. Comb. Chem. High Throughput Screen. 7, 557–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Haggarty, S.J., Koeller, K.M., Wong, J.C., Grozinger, C.M. & Schreiber, S.L. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl. Acad. Sci. USA 100, 4389–4394 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wong, J.C., Hong, R. & Schreiber, S.L. Structural biasing elements for in-cell histone deacetylase paralog selectivity. J. Am. Chem. Soc. 125, 5586–5587 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Marks, P.A., Miller, T. & Richon, V.M. Histone deacetylases. Curr. Opin. Pharmacol. 3, 344–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. McLaughlin, F. & La Thangue, N.B. Histone deacetylase inhibitors open new doors in cancer therapy. Biochem. Pharmacol. 68, 1139–1144 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Sternson, S.M., Wong, J.C., Grozinger, C.M. & Schreiber, S.L. Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. Org. Lett. 3, 4239–4242 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Hubbert, C. et al. HDAC6 is a microtubule-associated deacetylase. Nature 417, 455–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Ding, S. & Schultz, P.G. A role for chemistry in stem cell biology. Nat. Biotechnol. 22, 833–840 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Ding, S., Gray, N.S., Wu, X., Ding, Q. & Schultz, P.G. A combinatorial scaffold approach toward kinase-directed heterocycle libraries. J. Am. Chem. Soc. 124, 1594–1596 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Ding, S. et al. Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. USA 100, 7632–7637 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, X., Ding, S., Ding, Q., Gray, N.S. & Schultz, P.G. Small molecules that induce cardiomyogenesis in embryonic stem cells. J. Am. Chem. Soc. 126, 1590–1591 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Wu, X., Ding, S., Ding, Q., Gray, N.S. & Schultz, P.G. A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J. Am. Chem. Soc. 124, 14520–14521 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, S., Zhang, Q., Wu, X., Schultz, P.G. & Ding, S. Dedifferentiation of lineage-committed cells by a small molecule. J. Am. Chem. Soc. 126, 410–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Nicolaou, K.C. et al. Discovery and optimization of non-steroidal FXR agonists from natural product-like libraries. Org. Biomol. Chem. 1, 908–920 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Downes, M. et al. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell 11, 1079–1092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nicolaou, K.C. et al. Natural product-like combinatorial libraries based on privileged structures. 2. Construction of a 10 000-membered benzopyran library by directed split-and-pool chemistry using NanoKans and optical encoding. J. Am. Chem. Soc. 122, 9954–9967 (2000).

    Article  CAS  Google Scholar 

  78. Boger, D.L., Desharnais, J. & Capps, K. Solution-phase combinatorial libraries: Modulating cellular signaling by targeting protein–protein or protein–DNA interactions. Angew. Chem. Int. Ed. Engl. 42, 4138–4176 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Boger, D.L., Lee, J.K., Goldberg, J. & Jin, Q. Two comparisons of the performance of positional scanning and deletion synthesis for the identification of active constituents in mixture combinatorial libraries. J. Org. Chem. 65, 1467–1474 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Berg, T. et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc. Natl. Acad. Sci. USA 99, 3830–3835 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koehler, A.N., Shamji, A.F. & Schreiber, S.L. Discovery of an inhibitor of a transcription factor using small molecule microarrays and diversity-oriented synthesis. J. Am. Chem. Soc. 125, 8420–8421 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Yin, X., Giap, C., Lazo, J.S. & Prochownik, E.V. Low molecular weight inhibitors of Myc–Max interaction and function. Oncogene 22, 6151–6159 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Austin, C.P., Brady, L.S., Insel, T.R. & Collins, F.S. Policy forum: molecular biology: NIH molecular libraries initiative. Science 306, 1138–1139 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Walsh, D., Wu, D. & Chang, Y.-T. Understanding the effects of the polymer support on reaction rates and kinetics: knowledge toward efficient synthetic design. Curr. Opin. Chem. Biol. 7, 353–361 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Affleck, R.L. Solutions for library encoding to create collections of discrete compounds. Curr. Opin. Chem. Biol. 5, 257–263 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Ertl, P., Rohde, B. & Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43, 3714–3717 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Generous financial support for my laboratory has been provided by the US National Institutes of Health (CA104685), Department of Defense (CM030085), William Randolph Hearst Fund in Experimental Therapeutics, Mr. William H. Goodwin and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, and the Experimental Therapeutics Center of Memorial Sloan-Kettering Cancer Center.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, D. Diversity-oriented synthesis: exploring the intersections between chemistry and biology. Nat Chem Biol 1, 74–84 (2005). https://doi.org/10.1038/nchembio0705-74

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio0705-74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing