Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differential regulation of E2F1 apoptotic target genes in response to DNA damage

Abstract

E2F1, a member of the E2F family of transcription factors, in addition to its established proliferative effect1, has also been implicated in the induction of apoptosis through p53-dependent and p53-independent pathways2. Several genes involved in the activation or execution of the apoptotic programme have recently been shown to be upregulated at the transcriptional level by E2F1 overexpression, including the genes encoding INK4a/ARF, Apaf-1, caspase 7 and p73 (refs 35). E2F1 is stabilized in response to DNA damage6,7 but it has not been established how this translates into the activation of specific subsets of E2F target genes. Here, we applied a chromatin immunoprecipitation approach to show that, in response to DNA damage, E2F1 is directed from cell cycle progression to apoptotic E2F target genes. We identify p73 as an important E2F1 apoptotic target gene in DNA damage response and we show that acetylation is required for E2F1 recruitment on the P1p73 promoter and for its transcriptional activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential activation of the P1p73, Apaf-1 and DHFR promoters by agents inducing DNA damage.
Figure 2: Activation of the P1p73 promoter in response to DNA damage is mediated by E2F1.
Figure 3: In vivo detection of promoter occupancy by E2F1 and E2F4 in asynchronously growing and doxorubicin (Doxo.)-treated cells.
Figure 4: Acetylation recruits E2F1 apoptotic potential.
Figure 5: PCAF is required to activate P1p73 transcription fully.

Similar content being viewed by others

References

  1. Muller, H. & Helin, K. The E2F transcription factors: key regulators of cell proliferation. Biochim. Biophys. Acta 1470, M1–M12 (2000).

    CAS  PubMed  Google Scholar 

  2. Phillips, A.C. & Vousden, K.H. E2F-1 induced apoptosis. Apoptosis 6, 173–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Muller, H. et al. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis. Genes Dev. 15, 267–285 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Stanelle, J., Stiewe, T., Theseling, C.C., Peter, M. & Putzer, B.M. Gene expression changes in response to E2F1 activation. Nucleic Acids Res. 30, 1859–1867 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol. 4, 859–864 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Blattner, C., Sparks, A. & Lane, D. Transcription factor E2F-1 is upregulated in response to DNA damage in a manner analogous to that of p53. Mol. Cell. Biol. 19, 3704–3713 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lin, W.C., Lin, F.T. & Nevins, J.R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15, 1833–1844 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ishida, S. et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell. Biol. 21, 4684–4699 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ren, B. et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints. Genes Dev. 16, 245–256 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wells, J., Graveel, C.R., Bartley, S.M., Madore, S.J. & Farnham, P.J. The identification of E2F1-specific target genes. Proc. Natl Acad. Sci. USA 99, 3890–3895 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bates, S. et al. p14ARF links the tumour suppressors RB and p53. Nature 395, 124–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Moroni, M.C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Lissy, N.A., Davis, P.K., Irwin, M., Kaelin, W.G. & Dowdy, S.F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Agami, R., Blandino, G., Oren, M. & Shaul, Y. Interaction of c-Abl and p73α and their collaboration to induce apoptosis. Nature 399, 809–813 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Costanzo, A. et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol. Cell 9, 175–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Flores, E.R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Gong, J.G. et al. The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage. Nature 399, 806–809 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Irwin, M. et al. Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407, 645–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Stiewe, T. & Putzer, B.M. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nature Genet. 26, 464–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Vossio, S. et al. DN-p73 is activated after DNA damage in a p53-dependent manner to regulate p53-induced cell cycle arrest. Oncogene 21, 3796–3803 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi, Y., Rayman, J.B. & Dynlacht, B.D. Analysis of promoter binding by the E2F and pRB families in vivo: Distinct E2F proteins mediate activation and repression. Genes Dev. 14, 804–816 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Luo, R.X., Postigo, A.A. & Dean, D.C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Martinez-Balbas, M.A., Bauer, U.M., Nielsen, S.J., Brehm, A. & Kouzarides, T. Regulation of E2F1 activity by acetylation. EMBO J. 19, 662–671 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhang, Q., Yao, H., Vo, N. & Goodman, R.H. Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc. Natl Acad. Sci. USA 97, 14323–14328 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chan, H.M., Krstic-Demonacos, M., Smith, L., Demonacos, C. & La Thangue, N.B. Acetylation control of the retinoblastoma tumour-suppressor protein. Nature Cell Biol. 3, 667–674 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, L.F., Mu, Y. & Green, W.C. Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB. EMBO J. 21, 6539–6548 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sartorelli, V. et al. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4, 725–734 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Trouche, D. & Kouzarides, T. E2F1 and E1A(12S) have a homologous activation domain regulated by RB and CBP. Proc. Natl Acad. Sci. USA 93, 1439–1442 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caplen, N.J., Parrish, S., Imani, F., Fire, A. & Morgan, R.A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742–9747 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Lavia, G. Blandino, P.L. Puri, M. Fanciulli and E. De Smaele for reading the manuscript critically and for helpful suggestions. This work was supported by grants from AIRC, MURST-Cofin, MURST-FIRB, Ministry of Health and Telethon to M.L., from AIRC, the Ministry of University and Research, National Research Council – 'Oncology' Project, the Ministry of Health MURST-CNR 'Biomolecole per la Salute Umana' Program and Center of Excellence BEMM to A.G.; from AIRC and Cenci-Bolognetti Foundation, Pasteur Institute, to I.S. and from the Ministry of Health to E.A. N.P. and L.B. are supported by fellowships from the Fondazione A. Cesalpino. R.G. is supported by a fellowship from FIRC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alberto Gulino or Massimo Levrero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information Fig. S1

Supplementary Information Fig. S2 (PDF 42 kb)

Supplementary Information Fig. S3

Supplementary Information Fig. S4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pediconi, N., Ianari, A., Costanzo, A. et al. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5, 552–558 (2003). https://doi.org/10.1038/ncb998

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb998

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing