Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions

Abstract

Structure chromosome (SMC) proteins organize the core of cohesin, condensin and Smc5–Smc6 complexes1. The Smc5–Smc6 complex is required for DNA repair, as well as having another essential but enigmatic function1. Here, we generated conditional mutants of SMC5 and SMC6 in budding yeast, in which the essential function was affected. We show that mutant smc5-6 and smc6-9 cells undergo an aberrant mitosis in which chromosome segregation of repetitive regions is impaired; this leads to DNA damage and RAD9-dependent activation of the Rad53 protein kinase. Consistent with a requirement for the segregation of repetitive regions, Smc5 and Smc6 proteins are enriched at ribosomal DNA (rDNA) and at some telomeres. We show that, following Smc5–Smc6 inactivation, metaphase-arrested cells show increased levels of X-shaped DNA (Holliday junctions) at the rDNA locus. Furthermore, deletion of RAD52 partially suppresses the temperature sensitivity of smc5-6 and smc6-9 mutants. We also present evidence showing that the rDNA segregation defects of smc5/smc6 mutants are mechanistically different from those previously observed for condensin mutants2,3. These results point towards a role for the Smc5–Smc6 complex in preventing the formation of sister chromatid junctions, thereby ensuring the correct partitioning of chromosomes during anaphase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of Smc5–Smc6 function generates DNA damage following mitosis.
Figure 2: The Smc5–Smc6 heterodimer is enriched in nucleolar and telomeric regions and is required for nucleolar integrity during anaphase.
Figure 3: smc6-9 cells missegregate the centromere-distal rDNA flank and the telomere, but not regions immediately before the rDNA or closer to the centromere in chromosome XII.
Figure 4: smc6-9 cells missegregate telomere but not arm tags in chromosome V.
Figure 5: The Smc5–Smc6 complex is involved in processing X-shaped DNA intermediates.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Jessberger, R. The many functions of SMC proteins in chromosome dynamics. Nature Rev. Mol. Cell Biol. 3, 767–778 (2002).

    Article  CAS  Google Scholar 

  2. D'Amours, D., Stegmeier, F. & Amon, A. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117, 455–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Sullivan, M., Higuchi, T., Katis, V. L. & Uhlmann, F. Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117, 471–482 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Lehmann, A. R. et al. The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol. Cell. Biol. 15, 7067–7080 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fujioka, Y., Kimata, Y., Nomaguchi, K., Watanabe, K. & Kohno, K. Identification of a novel non-structural maintenance of chromosomes (SMC) component of the SMC5–SMC6 complex involved in DNA repair. J. Biol. Chem. 277, 21585–21591 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. McDonald, W. H., Pavlova, Y., Yates, J. R. & Boddy, M. N. Novel essential DNA repair proteins Nse1 and Nse2 are subunits of the fission yeast Smc5–Smc6 complex. J. Biol. Chem. 278, 45460–45467 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Boddy, M. N. et al. Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol. Cell. Biol. 23, 5939–5946 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hazbun, T. R. et al. Assigning function to yeast proteins by integration of technologies. Mol. Cell 12, 1353–1365 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Pebernard, S., McDonald, W. H., Pavlova, Y., Yates, I. J. & Boddy, M. N. Nse1, Nse2, and a novel subunit of the Smc5–Smc6 complex, Nse3, play a crucial role in meiosis. Mol. Biol. Cell 15, 4866–4876 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verkade, H. M., Bugg, S. J., Lindsay, H. D., Carr, A. M. & O'Connell, M. J. Rad18 is required for DNA repair and checkpoint responses in fission yeast. Mol. Biol. Cell 10, 2905–2918 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Onoda, F. et al. SMC6 is required for MMS-induced interchromosomal and sister chromatid recombinations in Saccharomyces cerevisiae. DNA Repair 3, 429–439 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Nyberg, K. A., Michelson, R. J., Putnam, C. W. & Weinert, T. A. Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Melo, J. A., Cohen, J. & Toczyski, D. P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809–2821 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response; spatiotemporal relationships among checkpoint and rRepair proteins. Cell 118, 699–713 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Gotta, M. et al. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134, 1349–1363 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Stegmeier, F., Visintin, R. & Amon, A. Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Machin, F., Torres-Rosell, J., Jarmuz, A. & Aragon, L. Spindle independent condensation-mediated segregation of yeast ribosomal DNA in late anaphase. J. Cell Biol. 168, 209–219 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torres-Rosell, J., Machin, F., Jarmuz, A. & Aragon, L. Nucleolar segregation lags behind the rest of the genome and requires Cdc14p activation by the FEAR network. Cell Cycle 3, 496–502 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Wotton, D. & Shore, D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748–760 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Seigneur, M., Bidnenko, V., Ehrlich, S. D. & Michel, B. RuvAB acts at arrested replication forks. Cell 95, 419–430 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. McGlynn, P. & Lloyd, R. G. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101, 35–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Collins, I. & Newlon, C. S. Meiosis-specific formation of joint DNA molecules containing sequences from homologous chromosomes. Cell 76, 65–75 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Schwacha, A. & Kleckner, N. Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76, 51–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Zou, H. & Rothstein, R. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90, 87–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Zhu, Q., Pongpech, P. & DiGate, R. J. Type I topoisomerase activity is required for proper chromosomal segregation in Escherichia coli. Proc. Natl Acad. Sc.i USA 98, 9766–9771 (2001).

    Article  CAS  Google Scholar 

  26. Ira, G., Malkova, A., Liberi, G., Foiani, M. & Haber, J. E. Srs2 and Sgs1–Top3 suppress crossovers during double-strand break repair in yeast. Cell 115, 401–411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu, L. & Hickson, I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870–874 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Osman, F., Dixon, J., Doe, C. L. & Whitby, M. C. Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81–Eme1 in meiosis. Mol. Cell 12, 761–774 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Machin, F. et al. Condensin regulates rDNA silencing by modulating nucleolar Sir2p. Curr. Biol. 14, 125–130 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Pearson, C. G., Maddox, P. S., Salmon, E. D. & Bloom, K. Budding yeast chromosome structure and dynamics during mitosis. J. Cell Biol. 152, 1255–1266 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huberman, J. A., Spotila, L. D., Nawotka, K. A., el-Assouli, S. M. & Davis, L. R. The in vivo replication origin of the yeast 2 microns plasmid. Cell 51, 473–481 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Brewer, B. J. & Fangman, W. L. A replication fork barrier at the 3´ end of yeast ribosomal RNA genes. Cell 55, 637–643 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Tercero, J. A. & Diffley, J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Tanaka, D. Moazed, K. Bloom, M. Yanagida, A. Verreault, J. Diffley, R. Rothstein and D. Toczyski for reagents, plasmids and strains; and K. Myant for help with the initial development of ts alleles. We also thank J. Diffley and S. Jackson for helpful advice. J.T.-R. was supported by the European Commission (Marie Curie Intra-European Fellowship). This work was supported by the Medical Research Council UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Aragón.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and S4; supplementary methods, and table S1 (PDF 400 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Rosell, J., Machín, F., Farmer, S. et al. SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions. Nat Cell Biol 7, 412–419 (2005). https://doi.org/10.1038/ncb1239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing