Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila

Abstract

Interactions between somatic and germline cells are critical for the normal development of egg and sperm. Here we show that the gene traffic jam (tj) produces a soma-specific factor that controls gonad morphogenesis and is required for female and male fertility. tj encodes the only large Maf factor in Drosophila melanogaster, an orthologue of the atypical basic Leu zipper transcription factors c-Maf and MafB/Kreisler in vertebrates. Expression of tj occurs in somatic gonadal cells that are in direct contact with germline cells throughout development. In tj mutant gonads, somatic cells fail to inter-mingle and properly envelop germline cells, causing an early block in germ cell differentiation. In addition, tj mutant somatic cells show an increase in the level of expression for several adhesion molecules. We propose that tj is a critical modulator of the adhesive properties of somatic cells, facilitating germline–soma interactions that are essential for germ cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defects in soma and germline of adult tjeo2 mutant gonads.
Figure 2: Molecular analysis of tj.
Figure 3: Somatic expression of tj in embryonic gonads.
Figure 4: tj mutant somatic cells do not inter-mingle with germ cells in larval gonads.
Figure 5: tj mutant follicle cells overexpress adhesion molecules.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Williamson, A. & Lehmann, R. Germ cell development in Drosophila. Annu. Rev. Cell Dev. Biol. 12, 365–391 (1996).

    Article  CAS  Google Scholar 

  2. Dobens, L.L. & Raftery, L.A. Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells. Dev. Dyn. 218, 80–93 (2000).

    Article  CAS  Google Scholar 

  3. Lin, H. The stem-cell niche theory: lessons from flies. Nature Rev. Genet. 3, 931–940 (2002).

    Article  CAS  Google Scholar 

  4. Lopez-Schier, H. The polarisation of the anteroposterior axis in Drosophila. Bioessays 25, 781–791 (2003).

    Article  Google Scholar 

  5. Schüpbach, T. & Wieschaus, E. Female sterile mutations on the second chromosome of Drosophila melanogaster. II. Mutations blocking oogenesis or altering egg morphology. Genetics 129, 1119–1136 (1991).

    PubMed  PubMed Central  Google Scholar 

  6. Lehmann, R. & Nüsslein-Volhard, C. Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell 47, 141–152 (1986).

    Article  CAS  Google Scholar 

  7. Margolis, J. & Spradling, A. Identification and behavior of epithelial stem cells in the Drosophila ovary. Development 121, 3797–3807 (1995).

    CAS  PubMed  Google Scholar 

  8. Kataoka, K., Nishizawa, M. & Kawai, S. Structure–function analysis of the maf oncogene product, a member of the b-Zip protein family. J. Virol. 67, 2133–2141 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Blank, V. & Andrews, N.C. The Maf transcription factors: regulators of differentiation. Trends Biochem. Sci. 22, 437–441 (1997).

    Article  CAS  Google Scholar 

  10. Kerppola, T.K. & Curran, T. A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf–Nrl family proteins. Oncogene 9, 3149–3158 (1994).

    CAS  PubMed  Google Scholar 

  11. Dlakic, M., Grinberg, A.V., Leonard, D.A. & Kerppola, T.K. DNA sequence-dependent folding determines the divergence in binding specificities between Maf and other bZIP proteins. EMBO J. 20, 828–840 (2001).

    Article  CAS  Google Scholar 

  12. Kurschner, C. & Morgan, J.I. The maf proto-oncogene stimulates transcription from multiple sites in a promoter that directs Purkinje neuron-specific gene expression. Mol. Cell Biol. 15, 246–254 (1995).

    Article  CAS  Google Scholar 

  13. Veraksa, A., McGinnis, N., Li, X., Mohler, J. & McGinnis, W. Cap 'n' collar B cooperates with a small Maf subunit to specify pharyngeal development and suppress deformed homeotic function in the Drosophila head. Development 127, 4023–4037 (2000).

    CAS  PubMed  Google Scholar 

  14. Starz-Gaiano, M. & Lehmann R. Moving towards the next generation. Mech. Dev. 105, 5–18 (2001).

    Article  CAS  Google Scholar 

  15. King, R.C. Ovarian development in Drosophila melanogaster (Academic, New York, 1970).

    Google Scholar 

  16. Godt, D. & Laski, F.A. Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bric à brac. Development 121, 173–187 (1995).

    CAS  PubMed  Google Scholar 

  17. Tepass, U., Godt. D. & Winklbauer, R. Cell sorting in animal development: signalling and adhesive mechanisms in the formation of tissue boundaries. Curr. Opin. Genet. Dev. 12, 572–582 (2002).

    Article  CAS  Google Scholar 

  18. Brower, D.L., Smith, R.J. & Wilcox, M. Differentiation within the gonads of Drosophila revealed by immunofluorescence. J. Embryol. Exp. Morphol. 63, 233–242 (1981).

    CAS  PubMed  Google Scholar 

  19. Niewiadomska, P., Godt, D. & Tepass, U. DE–Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144, 533–547 (1999).

    Article  CAS  Google Scholar 

  20. Barthalay, Y., Hipeau-Jacquotte, R., de la Escalera, S., Jimenez, F. & Piovant, M. Drosophila Neurotactin mediates heterophilic cell adhesion. EMBO J. 9, 3603–3609 (1990).

    Article  CAS  Google Scholar 

  21. Steinberg, M.S. Adhesion in development: an historical overview. Dev. Biol. 180, 377–388 (1996).

    Article  CAS  Google Scholar 

  22. Elkins, T., Hortsch, M., Bieber, A.J., Snow, P.M. & Goodman, C.S. Drosophila fasciclin I is a novel homophilic adhesion molecule that along with fasciclin III can mediate cell sorting. J. Cell Biol. 110, 1825–1832 (1990).

    Article  CAS  Google Scholar 

  23. Chiba, A., Snow, P., Keshishian, H. & Hotta, Y. Fasciclin III as a synaptic target recognition molecule in Drosophila. Nature 374, 166–168 (1995).

    Article  CAS  Google Scholar 

  24. Godt, D. & Tepass, U. Organogenesis: keeping in touch with the germ cells. Curr. Biol. 13, R683–R685 (2003).

    Article  CAS  Google Scholar 

  25. Jenkins, A.B., McCaffery, J.M. & Van Doren, M. Drosophila E-cadherin is essential for proper germ cell–soma interaction during gonad morphogenesis. Development 130, 4417–4426 (2003).

    Article  CAS  Google Scholar 

  26. Cooke, J. et al. Eph signalling functions downstream of Val to regulate cell sorting and boundary formation in the caudal hindbrain. Development 128, 571–580 (2001).

    CAS  PubMed  Google Scholar 

  27. Sadl, V. et al. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells. Dev. Biol. 249, 16–29 (2002).

    Article  CAS  Google Scholar 

  28. Campos-Ortega, J.A. & Hartenstein, V. The embryonic development of Drosophila melanogaster 2nd edn (Springer-Verlag Berlin, Heidelberg, New York, 1997).

    Book  Google Scholar 

  29. Powers, P.A. & Ganetzky, B. On the components of segregation distortion in Drosophila melanogaster. V. Molecular analysis of the Sd locus. Genetics 129, 133–144 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Oda, H., Uemura, T., Harada, Y., Iwai, Y. & Takeichi, M. A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell–cell adhesion. Dev. Biol. 165, 716–726 (1994).

    Article  CAS  Google Scholar 

  31. Iwai, Y. et al. Axon patterning requires DN–cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997).

    Article  CAS  Google Scholar 

  32. Lasko, P.F. & Ashburner, M. Posterior localization of vasa protein correlates with, but is not sufficient for, pole cell development. Genes Dev. 4, 905–921 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to T. Schüpbach, E. Koundakjian, B. Wakimoto, D. Lindsley, C. Zuker, A. Kiger and M. Fuller for traffic jam alleles and related information. We thank M. Arandjelovic for sharing unpublished results. We thank B. Ganetzky, A. Chiba, H. Oda and G. Boulianne for molecular reagents, P. Lasko, T. Uemura, and the Developmental Studies Hybridoma Bank for antibodies, S. DiNardo, F. Laski, T. Kornberg and the Bloomington Stock Centre for fly stocks, and W. Ngo, S. Amin and A. Pirani for experimental assistance. We thank U. Tepass for critical comments on the manuscript. This research was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (to D.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Godt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Alls, J., Avancini, R. et al. The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nat Cell Biol 5, 994–1000 (2003). https://doi.org/10.1038/ncb1058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing