Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway

Abstract

Proliferation and apoptosis must be precisely regulated to form organs with appropriate cell numbers and to avoid tumour growth1,2. Here we show that Hippo (Hpo), the Drosophila homologue of the mammalian Ste20-like kinases3, MST1/2, promotes proper termination of cell proliferation and stimulates apoptosis during development. hpo mutant tissues are larger than normal because mutant cells continue to proliferate beyond normal tissue size and are resistant to apoptotic stimuli that usually eliminate extra cells. Hpo negatively regulates expression of Cyclin E to restrict cell proliferation, downregulates the Drosophila inhibitor of apoptosis protein DIAP1, and induces the proapoptotic gene head involution defective (hid) to promote apoptosis. The mutant phenotypes of hpo are similar to those of warts (wts), which encodes a serine/threonine kinase of the myotonic dystrophy protein kinase family4,5, and salvador (sav), which encodes a WW domain protein that binds to Wts6,7. We find that Sav binds to a regulatory domain of Hpo that is essential for its function, indicating that Hpo acts together with Sav and Wts in a signalling module that coordinately regulates cell proliferation and apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: hippo regulates tissue size, cell-cycle arrest and expression of Cyclin E.
Figure 2: hippo is required for apoptosis in eye development and regulates DIAP1.
Figure 3: Hpo is a Ste20 family kinase that interacts with Sav and induces apoptosis.
Figure 4: Hid and Wts are required for Hippo action.

Similar content being viewed by others

References

  1. Conlon, I. & Raff, M. Size control in animal development. Cell 96, 235–244 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Green, D.R. & Evan, G.I. A matter of life and death. Cancer Cell 1, 19–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Dan, I., Watanabe, N.M. & Kusumi, A. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol. 11, 220–230 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Justice, R.W., Zilian, O., Woods, D.F., Noll, M. & Bryant, P.J. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev. 9, 534–546 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, T., Wang, W., Zhang, S., Stewart, R.A. & Yu, W. Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053–1063 (1995).

    CAS  PubMed  Google Scholar 

  6. Kango-Singh, M. et al. Shar-pei mediates cell proliferation arrest during imaginal disc growth in Drosophila. Development 129, 5719–5730 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Tapon, N. et al. salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 468–478 (2002).

    Article  Google Scholar 

  8. Newsome, T.P., Asling, B. & Dickson, B.J. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 127, 851–860 (2000).

    CAS  PubMed  Google Scholar 

  9. Baker, N.E. Cell proliferation, survival, and death in the Drosophila eye. Semin. Cell Dev. Biol. 12, 499–507 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Neufeld, T.P., de la Cruz, A.F., Johnston, L.A. & Edgar, B.A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Grether, M.E., Abrams, J.M., Agapite, J., White, K. & Steller, H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 9, 1694–1708 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. White, K., Tahaoglu, E. & Steller, H. Cell killing by the Drosophila gene reaper. Science 271, 805–807 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, P., Nordstrom, W., Gish, B. & Abrams, J.M. grim, a novel cell death gene in Drosophila. Genes Dev. 10, 1773–1782 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Christich, A. et al. The damage-responsive Drosophila gene sickle encodes a novel IAP binding protein similar to but distinct from reaper, grim, and hid. Curr. Biol. 12, 137–140 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Wing, J.P. et al. Drosophila sickle is a novel grim-reaper cell death activator. Curr. Biol. 12, 131–135 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Srinivasula, S.M. et al. sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP-inhibitory protein. Curr. Biol. 12, 125–130 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tenev, T., Zachariou, A., Wilson, R., Paul, A. & Meier, P. Jafrac2 is an IAP antagonist that promotes cell death by liberating Dronc from DIAP1. EMBO J. 21, 5118–5129 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yoo, S.J. et al. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nature Cell Biol. 4, 416–424 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, S.L., Hawkins, C.J., Yoo, S.J., Muller, H.A. & Hay, B.A. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 98, 453–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Lisi, S., Mazzon, I. & White, K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 154, 669–678 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Goyal, L., McCall, K., Agapite, J., Hartwieg, E. & Steller, H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J. 19, 589–597 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berger, J. et al. Genetic mapping with SNP markers in Drosophila. Nature Genet. 29, 475–481 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Cheung, W.L. et al. Apoptotic phosphorylation of histone H2B is mediated by mammalian sterile twenty kinase. Cell 113, 507–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Graves, J.D. et al. Caspase-mediated activation and induction of apoptosis by the mammalian Ste20-like kinase Mst1. EMBO J. 17, 2224–2234 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, K.K., Ohyama, T., Yajima, N., Tsubuki, S. & Yonehara, S. MST, a physiological caspase substrate, highly sensitizes apoptosis both upstream and downstream of caspase activation. J. Biol. Chem. 276, 19276–19285 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Creasy, C.L., Ambrose, D.M. & Chernoff, J. The Ste20-like protein kinase, Mst1, dimerizes and contains an inhibitory domain. J. Biol. Chem. 271, 21049–21053 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Kurada, P. & White, K. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95, 319–329 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Bergmann, A., Agapite, J., McCall, K. & Steller, H. The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95, 331–341 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, L. & Baker, N.E. Cell cycle withdrawal, progression, and cell survival regulation by EGFR and its effectors in the differentiating Drosophila eye. Dev. Cell 4, 359–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Deng, Y., Pang, A. & Wang, J.H. Regulation of mammalian STE20-like kinase 2 (MST2) by protein phosphorylation/dephosphorylation and proteolysis. J. Biol. Chem. 278, 11760–11767 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Johnston, L.A. & Gallant, P. Control of growth and organ size in Drosophila. BioEssays 24, 54–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Oldham, S. & Hafen, E. Insulin/IGF and target of rapamycin signaling: a TOR de force in growth control. Trends Cell Biol. 13, 79–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Turenchalk, G.S., St John, M.A., Tao, W. & Xu, T. The role of LATS in cell cycle regulation and tumorigenesis. Biochim. Biophys. Acta 1424, M9–M16 (1999).

    CAS  PubMed  Google Scholar 

  34. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Basler, H. J. Bellen, A. Bergmann, P. Bryant, K.-W. Choi, B. Dickson, B. Edgar, B. Hay, G. Mardon, M. Miura, A. Singh, the Bloomington Drosophila Stock Center, and the Developmental Studies Hybridoma Bank for fly stocks and antibodies; H. Jafar-Nejad for technical advice with the yeast-two-hybrid screen; G. Zhai for help with SNP detection by HPLC; P. R. Hiesinger for help with pupal stainings; J. Zhang for help with microinjections; K. Dunner for help with SEM, which along with DNA sequencing was done at M. D. Anderson core facilities, which is supported by a grant from the National Cancer Institute (CA16672); L. McCord for help with artwork; and H. J. Bellen, A. Bergmann, B. Frankfort, P. R. Hiesinger, R. Johnson, J. Kunz, S. Markus, K. Pappu, A. Singh and G. Zhai for discussion and comments on the manuscript. This publication was made possible by grants from the NIEHS (T32 ES07332) and the NICHD (HD07325) to R.U., and an NIH grant (GM067997), a Pharmacia Research Grant and a Basil O'Connor Award (FY01-497) to G.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Halder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig.S1

Supplementary Information, Fig.S2 (PDF 394 kb)

Supplementary Information, Fig.S3

Supplementary Information, Fig.S4

Supplementary Information, Fig.S5

Supplementary Information, Fig.S6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udan, R., Kango-Singh, M., Nolo, R. et al. Hippo promotes proliferation arrest and apoptosis in the Salvador/Warts pathway. Nat Cell Biol 5, 914–920 (2003). https://doi.org/10.1038/ncb1050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing