Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Understanding the diversity of prions

The protein-only hypothesis proposes that prions propagate by imparting specific folds onto cellular proteins. This hypothesis has met with resistance, partly because of the observation that many phenotypically distinct prion 'strains' are known to exist in yeast and mammals. Recent work on yeast prions may help reconcile the occurrence of prion strains with the prion hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical models for prion-encoded strain phenotypes.

References

  1. Aguzzi, A. & Polymenidou, M. Cell 116, 313–327 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Wickner, R.B. Science 264, 566–569 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. King, C.Y. & Diaz-Avalos, R. Nature 428, 319–323 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Tanaka, M., Chien, P., Naber, N., Cooke, R. & Weissman, J.S. Nature 428, 323–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Aguzzi, A. & Heikenwalder, M. Nature 423, 127–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Dickinson, A.G. & Meikle, V.M. Mol. Gen. Genet. 112, 73–79 (1971).

    Article  CAS  PubMed  Google Scholar 

  7. Weissmann, C. Nature 352, 679–683 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Aguzzi, A. & Weissmann, C. Nature 389, 795–798 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Safar, J. et al. Nature Med. 4, 1157–65 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Asante, E.A. et al. EMBO J. 21, 6358–6366 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glatzel, M., Abela, E., Maissen, M. & Aguzzi, A. New Engl. J. Med. 349, 1812–1820 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Aguzzi, A. & Glatzel, M. Lancet 363, 411–412 (2004).

    Article  PubMed  Google Scholar 

  13. Derkatch, I.L., Chernoff, Y.O., Kushnirov, V.V., Inge Vechtomov, S.G. & Liebman, S.W. Genetics 144, 1375–1386 (1996).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Chien, P. & Weissman, J.S. Nature 410, 223–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. King, C.Y. J Mol Biol 307, 1247–1260 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Sparrer, H.E., Santoso, A., Szoka, F.C., Jr. & Weissman, J.S. Science 289, 595–599 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguzzi, A. Understanding the diversity of prions. Nat Cell Biol 6, 290–292 (2004). https://doi.org/10.1038/ncb0404-290

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0404-290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing