Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo

Abstract

A major limitation of adenovirus-mediated gene therapy for inherited diseases is the instability of transgene expression in vivo, which originates at least in part from the loss of the linear, extrachromosomal vector genomes. Herein we describe the production of a gene-deleted adenovirus–transposon vector that stably maintains virus-encoded transgenes in vivo through integration into host cell chromosomes. This system utilizes a donor transposon vector that undergoes Flp-mediated recombination and excision of its therapeutic payload in the presence of the Flp and Sleeping Beauty recombinases. Systemic in vivo delivery of this system resulted in efficient generation of transposon circles and stable transposase-mediated integration in mouse liver. Somatic integration was sufficient to maintain therapeutic levels of human coagulation Factor IX for more than six months in mice undergoing extensive liver proliferation. These vectors combine the versatility of adenoviral vectors with the integration capabilities of a eukaryotic DNA transposon and should prove useful in the treatment of genetic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of transposition from E1/E3-deleted adenoviruses and linear transposon DNA.
Figure 2: The adeno-transposon system.
Figure 3: Conditional rearrangement and chromosomal integration of HD vectors in vivo following expression of the Flp and SB recombinases.
Figure 4: Adenovirus-based β-galactosidase expression in mouse liver before and after hepatocellular regeneration.
Figure 5: In vivo human Factor IX persistence in actively dividing mouse livers via the adeno-transposon system.
Figure 6: Transposition in vivo from a single Ad vector encoding transposon and Flp-activated transposase activities.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kozarsky, K.F. & Wilson, J.M. Gene therapy: adenovirus vectors. Curr. Opin. Genet. Dev. 3, 499–503 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Yang, Y. et al. Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. USA 91, 4407–4411 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang, Y., Li, Q., Ertl, H.C. & Wilson, J.M. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol. 69, 2004–2015 (1995).

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Yang, Y., Jooss, K.U., Su, Q., Ertl, H.C. & Wilson, J.M. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther. 3, 137–144 (1996).

    PubMed  Google Scholar 

  5. Parks, R.J. et al. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc. Natl. Acad. Sci. USA 93, 13565–13570 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schiedner, G. et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat. Genet. 18, 180–183 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Balague, C. et al. Sustained high-level expression of full-length human Factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. Blood 95, 820–828 (2000).

    CAS  PubMed  Google Scholar 

  8. Clemens, P.R. et al. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther. 3, 965–972 (1996).

    CAS  PubMed  Google Scholar 

  9. Morral, N. et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of α1-antitrypsin with negligible toxicity. Hum. Gene Ther. 9, 2709–2716 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Morral, N. et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc. Natl. Acad. Sci. USA 96, 12816–12821 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ehrhardt, A. & Kay, M.A. A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation Factor IX at low doses in vivo. Blood 99, 1–8 (2002).

    Article  Google Scholar 

  12. Kim, I.H., Jozkowicz, A., Piedra, P.A., Oka, K. & Chan, L. Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc. Natl. Acad. Sci. USA 98, 13282–13287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harui, A., Suzuki, S., Kochanek, S. & Mitani, K. Frequency and stability of chromosomal integration of adenovirus vectors. J. Virol. 73, 6141–6146 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hillgenberg, M., Tonnies, H. & Strauss, M. Chromosomal integration pattern of a helper-dependent minimal adenovirus vector with a selectable marker inserted into a 27.4-kilobase genomic stuffer. J. Virol. 75, 9896–9908 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Plasterk, R.H., Izsvak, Z. & Ivics, Z. Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Fischer, S.E., Wienholds, E. & Plasterk, R.H. Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl. Acad. Sci. USA 98, 6759–6764 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ivics, Z., Hackett, P.B., Plasterk, R.H. & Izsvak, Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91, 501–510 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Yant, S.R. et al. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system. Nat. Genet. 25, 35–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Nakai, H. et al. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo. J. Virol. 75, 6969–6976 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vos, J.C., De Baere, I. & Plasterk, R.H. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 10, 755–761 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Ng, P., Beauchamp, C., Evelegh, C., Parks, R. & Graham, F.L. Development of a FLP/frt system for generating helper-dependent adenoviral vectors. Mol. Ther. 3, 809–815 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Rodriguez, C.I. et al. High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat. Genet. 25, 139–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Plasterk, R.H. The Tc1/mariner transposon family. Curr. Top. Microbiol. Immunol. 204, 125–143 (1996).

    CAS  PubMed  Google Scholar 

  24. Miller, D.G., Rutledge, E.A. & Russell, D.W. Chromosomal effects of adeno-associated virus vector integration. Nat. Genet. 30, 147–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Nakai, H., Iwaki, Y., Kay, M.A. & Couto, L.B. Isolation of recombinant adeno-associated virus vector–cellular DNA junctions from mouse liver. J. Virol. 73, 5438–5447 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Chalmers, R., Guhathakurta, A., Benjamin, H. & Kleckner, N. IHF modulation of Tn10 transposition: sensory transduction of supercoiling status via a proposed protein/DNA molecular spring. Cell 93, 897–908 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Crellin, P. & Chalmers, R. Protein–DNA contacts and conformational changes in the Tn10 transpososome during assembly and activation for cleavage. EMBO J. 20, 3882–3891 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Z. & Harshey, R.M. Crucial role for DNA supercoiling in Mu transposition: a kinetic study. Proc. Natl. Acad. Sci. USA 91, 699–703 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soifer, H. et al. Stable integration of transgenes delivered by a retrotransposon–adenovirus hybrid vector. Hum. Gene Ther. 12, 1417–1428 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Lieber, A., Steinwaerder, D.S., Carlson, C.A. & Kay, M.A. Integrating adenovirus-adeno-associated virus hybrid vectors devoid of all viral genes. J. Virol. 73, 9314–9324 (1999).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Recchia, A. et al. Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc. Natl. Acad. Sci. USA 96, 2615–2620 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng, C., Baum, B.J., Iadarola, M.J. & O'Connell, B.C. Genomic integration and gene expression by a modified adenoviral vector. Nat. Biotechnol. 18, 176–180 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Murphy, S.J., Chong, H., Bell, S., Diaz, R.M. & Vile, R.G. Novel integrating adenoviral/retroviral hybrid vector for gene therapy. Hum. Gene Ther. 13, 745–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Soifer, H. et al. A novel, helper-dependent, adenovirus–retrovirus hybrid vector: stable transduction by a two-stage mechanism. Mol. Ther. 5, 599–608 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Shayakhmetov, D.M. et al. A high-capacity, capsid-modified hybrid adenovirus/adeno-associated virus vector for stable transduction of human hematopoietic cells. J. Virol. 76, 1135–1143 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng, M. et al. Stable in vivo gene transduction via a novel adenoviral/retroviral chimeric vector. Nat. Biotechnol. 15, 866–870 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Luo, G., Ivics, Z., Izsvak, Z. & Bradley, A. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 95, 10769–10773 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peters, A.H. et al. Absence of germline infection in male mice following intraventricular injection of adenovirus. Mol. Ther. 4, 603–613 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Kanatsu-Shinohara, M. et al. Adenovirus-mediated gene delivery and in vitro microinsemination produce offspring from infertile male mice. Proc. Natl. Acad. Sci. USA 99, 1383–1388 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tallone, T. et al. A mouse model for adenovirus gene delivery. Proc. Natl. Acad. Sci. USA 98, 7910–7915 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinwaerder, D.S. & Lieber, A. Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo. Gene Ther. 7, 556–567 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Groth, A.C., Olivares, E.C., Thyagarajan, B. & Calos, M.P. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97, 5995–6000 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Thyagarajan, B., Olivares, E.C., Hollis, R.P., Ginsburg, D.S. & Calos, M.P. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol. Cell. Biol. 21, 3926–3934 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burr, A.W., Carpenter, M.R., Hines, J.E., Gullick, W.J. & Burt, A.D. Intrahepatic distribution of transforming growth factor-α (TGFα) during liver regeneration following carbon tetrachloride-induced necrosis. J. Pathol. 170, 95–100 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Liu, F., Song, Y. & Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 6, 1258–1266 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, G., Budker, V. & Wolff, J.A. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther. 10, 1735–1737 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. McGrory, W.J., Bautista, D.S. & Graham, F.L. A simple technique for the rescue of early region I mutations into infectious human adenovirus type 5. Virology 163, 614–617 (1988).

    Article  CAS  PubMed  Google Scholar 

  48. Kay, M.A., Graham, F., Leland, F. & Woo, S.L. Therapeutic serum concentrations of human α1-antitrypsin after adenoviral-mediated gene transfer into mouse hepatocytes. Hepatology 21, 815–819 (1995).

    CAS  PubMed  Google Scholar 

  49. Izsvak, Z., Ivics, Z. & Plasterk, R.H. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J. Mol. Biol. 302, 93–102 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Ohashi for helpful discussions, J. Chamberlain for providing the C7-Cre cells, and S. Dymecki for providing Flp/FRT-based plasmids. This work was supported by NIH grant DK49022 (M.A.K.). A.E. is the recipient of a Judith Pool National Hemophilia Fellowship. J.G.M. was funded by grants from the Carlsberg Foundation and the Danish Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Kay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yant, S., Ehrhardt, A., Mikkelsen, J. et al. Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo. Nat Biotechnol 20, 999–1005 (2002). https://doi.org/10.1038/nbt738

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt738

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing