Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Getting the glycosylation right: Implications for the biotechnology industry

Abstract

Glycosylation is the most extensive of all the posttranslational modifications, and has important functions in the secretion, antigenicity and clearance of glycoproteins. In recent years major advances have been made in the cloning of glycosyltransferase enzymes, in understanding the varied biological functions of carbohydrates, and in the accurate analysis of glycoprotein heterogeneity. In this review we discuss the impact of these advances on the choice of a recombinant host cell line, in optimizing cell culture processes, and in choosing the appropriate level of glycosylation analysis for each stage of product development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Geisow, M.J. 1992. Glycoprotein glycans—roles and controls. Trends Biotechnol. 10: 333–335.

    CAS  PubMed  Google Scholar 

  2. Liu, D.T.Y. 1992. Glycoprotein pharmaceuticals—scientific and regulatory considerations, and the United-States Orphan Drug-Act. Trends Biotechnol. 10: 114–120.

    CAS  PubMed  Google Scholar 

  3. Abeijon, C. and Hirschberg, C.B. 1992. Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biochem. Sci. 17: 32–36.

    CAS  PubMed  Google Scholar 

  4. Hayes, B.K. and Hart, G.W. 1994. Novel forms of protein glycosylation. Curr. Opinion Struct. Biol. 4: 692–696.

    CAS  Google Scholar 

  5. Joziasse, D.H. 1992. Mammalian glycosyltransferases: genomic organization and protein structure. Glycobiology 2: 271–277.

    CAS  PubMed  Google Scholar 

  6. Field, M.C. and Wainwright, L.J. 1995. Molecular-cloning of eukaryotic glycoprotein and glycolipid glycosyltransferases—a survey. Glycobiology 5: 463–472.

    CAS  PubMed  Google Scholar 

  7. Varki, A. 1993. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97–130.

    CAS  PubMed  Google Scholar 

  8. Parekh, R.B. and Patel, T.P. 1992. Comparing the glycosylation patterns of recombinant glycoproteins. Trends Biotechnol. 10: 276–280.

    CAS  PubMed  Google Scholar 

  9. Jenkins, N. and Curling, E.M. 1994. Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb. Technol. 16: 354–364.

    CAS  PubMed  Google Scholar 

  10. Goochee, C.F. and Monica, T.J. 1990. Environmental effects on protein glycosylation. Bio/Technology 8: 421–427.

    CAS  Google Scholar 

  11. Goochee, C.F., Gramer, M.J., Andersen, D.C., Bahr, J.B., and Rasmussen, J.R. 1991. The oligosaccharides of glycoproteins—bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Bio/Technology 9: 1347–1355.

    CAS  Google Scholar 

  12. Letourneur, O., Sechi, S., Willettebrown, J., Robertson, M.W., and Kinet, J.P. 1995. Glycosylation of human truncated Fc-epsilon-RI α-chain is necessary for efficient folding in the endoplasmic-reticulum. J. Biol. Chem. 270: 8249–8256.

    CAS  PubMed  Google Scholar 

  13. Stimson, E., Virji, M., Makepeace, K., Dell, A., Morris, H.R., Payne, G., et al. 1995. Meningococcal pilin—a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol. Microbiol. 17: 1201–1214.

    CAS  PubMed  Google Scholar 

  14. Herscovics, A.O. and Orlean, P. 1993. Glycoprotein biosynthesis in yeast. FASEB J. 7: 540–550.

    CAS  PubMed  Google Scholar 

  15. Kniskern, P.J., Hagopian, A., Burke, P., Schulz, L.D., Montgomery, D.L., Hurni, W.M., et al. 1994. Characterization and evaluation of a recombinant hepatitis-B vaccine expressed in yeast defective for N-linked hyperglycosylation. Vaccine 12: 1021–1025.

    CAS  PubMed  Google Scholar 

  16. Lehle, L., Eiden, A., Lehnert, K., Haselbeck, A., and Kopetzki, E. 1995. Glycoprotein-biosynthesis in Saccharomyces cerevisiae—ngd29, an N-glyco-sylation mutant allelic to ochl having a defect in the initiation of outer chain formation. FEBS Lett. 370: 41–45.

    CAS  PubMed  Google Scholar 

  17. Kalsner, I., Schneider, F.J., Geyer, R., Ahorn, H., and Maurerfogy, I. 1992. Comparison of the carbohydrate moieties of recombinant soluble Fc-epsilon receptor (sFc-ε -RII/scd23) expressed in Saccharomyces cerevisiae and Chinese hamster ovary cells—different O-glycosylation sites are used by yeast and mammalian cells. Glycoconjugate J. 9: 209–216.

    CAS  Google Scholar 

  18. Matsumoto, S., Ikura, K., Ueda, M., and Sasaki, R. 1995. Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol. Biol. 27: 1163–1172.

    CAS  PubMed  Google Scholar 

  19. Altmann, F., Tretter, V., Kubelka, V., Staudacher, E., Marz, L., and Becker, W.M. 1993. Fucose in α1-3 linkage to the N-glycan core forms an allergenic epitope that occurs in plant and in insect glycoproteins. Glycoconjugate J. 10: 301.

    Google Scholar 

  20. Ma, J.K.C. and Hein, M.B. 1995. Immunotherapeutic potential of antibodies produced in plants. Trends Biotechnol. 13: 522–527.

    CAS  PubMed  Google Scholar 

  21. James, D.C., Freedman, R.B., Hoare, M., Ogonah, O.W., Rooney, B.C., Larionov, O.A., et al. 1995. N-glycosylation of recombinant human interferon-γ produced in different animal expression systems. Bio/Technology 13: 592–596.

    CAS  Google Scholar 

  22. Grabenhorst, E., Hofer, B., Nimtz, M., Jager, V., and Conradt, H.S. 1993. Biosynthesis and secretion of human interleukin-2 glycoprotein variants from baculovirus-infected sf21 cells—characterization of polypeptides and post-translational modifications. Eur. J. Biochem. 215: 189–197.

    CAS  PubMed  Google Scholar 

  23. Jarvis, D.L. and Finn, E.E. 1995. Biochemical-analysis of the N-glycosylation pathway in baculovirus-infected lepidopteran insect cells. Virology 212: 500–511.

    CAS  PubMed  Google Scholar 

  24. Davidson, D.J.C., Fraser, M.J., and Castellino, F.J. 1990. Oligosaccharide processing in the expression of human plasminogen cDNA by lepidopteran insect (Spodoptera frugiperda) cells. Biochemistry 29: 5584–5590.

    CAS  PubMed  Google Scholar 

  25. Ogonah, O.W., Freedman, R.B., Jenkins, N., Patel, K., and Rooney, B.C. 1996. Isolation and characterization of an insect-cell line able to perform complex N-linked glycosylation on recombinant proteins. Bio/Technology 14: 197–202.

    CAS  Google Scholar 

  26. Davis, T.R. and Wood, H.A. 1995. Intrinsic glycosylation potentials of insect-cell cultures and insect larvae. In Vitro Cellular Develop . Biol.-Animal 31: 659–663.

    CAS  Google Scholar 

  27. Larsen, R.D., Rivera-Marrero, C.A., Ernst, L.K., Cummings, R.D., and Lowe, J.B. 1990. Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Gal:β-D-Gal(1,4)-D-GlcNAc α(1,3)-galactosyl-transferase cDNA. J. Biol. Chem. 265: 7055–7061.

    CAS  PubMed  Google Scholar 

  28. Borrebaeck, C.A.K., Malmborg, A.C., and Ohlin, M. 1993. Does endogenous glycosylation prevent the use of mouse monoclonal antibodies as cancer therapeutics? Immunol. Today 14: 477–479.

    CAS  PubMed  Google Scholar 

  29. Tsuji, J., Noma, S., Suzuki, J., Okumura, K., and Shimizu, N. 1990. Specificity of human natural antibody to recombinant tissue-type plasminogen activator (t-PA) expressed in mouse C127 cells. Chem. Pharm. Bull. 38: 765–768.

    CAS  Google Scholar 

  30. Lund, J.T., Takahashi, N., Hindley, S.A., Tyler, R., Goodall, M., and Jefferis, R. 1993. Glycosylation of human IgG subclass and mouse lgG2b heavy chains secreted by mouse J558L transfectoma cell lines as chimeric antibodies. Human Antibodies & Hybridomas 4: 20–25.

    CAS  Google Scholar 

  31. Lund, J.T., Takahashi, N., Nakagawa, H., Goodall, M., Bentley, T., Hindley, S.A., et al. 1993. Control of IgG/Fc glycosylation: a comparison of oligosaccharides from chimeric human/mouse and mouse subclass immunoglobulin Gs. Mol. Immunol. 30: 741–748.

    CAS  PubMed  Google Scholar 

  32. Yu-lp, C.C., Miller, W.J., Silberklang, M., Mark, G.E., Ellis, R.W., Huang, L.H., et al. 1994. Structural characterization of the N-glycans of a humanized anti-CD8 murine immunoglobulin G. Arch. Biochem. Biophys. 308: 387–399.

    Google Scholar 

  33. Lifely, M.R., Hale, C., Boyce, S., Keen, M.J., and Phillips, J. 1995. Glycosylation and biological activity of CAMPATH-1H expressed in different cell lines and grown under different culture conditions. Glycobiology 5: 813–822.

    CAS  PubMed  Google Scholar 

  34. Stephens, S., Emtage, S., Vetterlein, O., Chaplin, L., Bebbington, C., Nesbitt, A., et al. 1995. Comprehensive pharmacokinetics of a humanized antibody and analysis of residual anti-idiotypic responses. Immunology 85: 668–674.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Endo, T., Wright, A., Morrison, S.L., and Kobata, A. 1995. Glycosylation of the variable region of immunoglobulin G: site-specific maturation of the sugar chains. Mol. Immunol. 32: 931–940.

    CAS  PubMed  Google Scholar 

  36. Hamadeh, P.M., Jarvis, G.A., Galili, U., Mandrell, R.E., Zhou, P., and Griffiss, J.M. 1992. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J. Clin. Invest. 89: 1223–1235.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lavecchio, J.A., Dunne, A.D., and Edge, A.S.B. 1995. Enzymatic removal of α-galactosyl epitopes from porcine endothelial-cells diminishes the cytotoxic effect of natural antibodies. Transplantation 60: 841–847.

    CAS  PubMed  Google Scholar 

  38. Monica, T.J., Williams, S.B., Goochee, C.F., and Maiorella, B.L. 1995. Characterization of the glycosylation of a human-IgM produced by a human-mouse hybridoma. Glycobiology 5: 175–185.

    CAS  PubMed  Google Scholar 

  39. Muchmore, E.A., Milewski, M., Varki, A., and Diaz, S. 1989. Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetyl-neuraminic acid is the cytosolic sugar nucleotide pool. J. Biol. Chem. 264: 20216–20223.

    CAS  PubMed  Google Scholar 

  40. Noguchi, A., Mukuria, C.J., Suzuki, E., and Naiki, M. 1995. Immunogenicity of N-glycolylneuraminic acid-containing carbohydrate chains of recombinant human erythropoietin expressed in Chinese hamster ovary cells. J. Biochem. 117: 59–62.

    CAS  PubMed  Google Scholar 

  41. Flesher, A.R., Marzowski, J., Wang, W.C., and Raff, H.V. 1995. Fluorophore labeled glycan analysis of immunoglobulin fusion proteins: correlation of -oligosaccharide content with in vivo clearance profile. Biotechnol. Bioeng. 46: 399–407.

    CAS  PubMed  Google Scholar 

  42. Kawano, T., Koyama, S., Takematsu, H., Kozutsumi, Y., Kawasaki, H., Kawashima, S., et al. 1995. Molecular cloning of cytidine monophospho-N-acetylneuraminic acid hydroxylase: regulation of species-specific and tissue-specific expression of N-glycolylneuraminic acid. J. Biol. Chem. 270: 16458–16463.

    CAS  PubMed  Google Scholar 

  43. Smith, D.F., Larsen, R.D., Mattox, S.A., Lowe, J.B., and Cummings, R.D. 1990. Transfer and expression of a murine UDP-Gal:β-D-Gal-α1,3-galactosyltrans-ferase gene in transfected Chinese hamster ovary cells. Competition reactions between the α1,3-galactosyltransferase and the endogenous α2,3-sialyltrans-ferase. J. Biol. Chem. 265: 6225–6234.

    CAS  PubMed  Google Scholar 

  44. Hokke, C.H., Bergwerff, A.A., Vandedem, G.W.K., Kamerling, J.R., and Vliegenthart, J.F.G. 1995. Structural-analysis of the sialylated N-linked and O-linked carbohydrate chains of recombinant-human-erythropoietin expressed in Chinese-hamster ovary cells—sialylation patterns and branch location of dimeric N-acetyllactosamine units. Eur. J. Biochem. 228: 981–1008.

    CAS  PubMed  Google Scholar 

  45. Lee, E.U., Roth, J., and Paulson, J.C. 1989. Alteration of terminal glycosylation sequences on N-linked oligosaccharides of Chinese hamster ovary cells by expression of β-galactoside α2,6-sialyltransferase. J. Biol. Chem. 264: 13848–13855.

    CAS  PubMed  Google Scholar 

  46. Minch, S.L., Kallio, P.T., and Bailey, J.E. 1995. Tissue-plasminogen activator co-expressed in chinese-hamster ovary cells with α2,6-sialyltransferase contains NeuAc-α2,6gal-B1,4GlcNAc linkages. Biotechnol. Prog. 11: 348–351.

    CAS  PubMed  Google Scholar 

  47. Grabenhorst, E., Hoffmann, A., Nimtz, M., Zettlmeissl, G., and Conradt, H.S. 1995. Construction of stable BHK-21-cells coexpressing human secretory glycoproteins and human Gal(β-1−4)GlcNAc-r α-2,6-sialyl-transferase α-2,6-linked NeuAc is preferentially attached to the Gal(β-1−4)GlcNAc(β-1−2)Man(α-1−3)-branch of diantennary oligosaccharides from secreted recombinant β-trace protein. Eur. J. Biochem. 232: 718–725.

    CAS  PubMed  Google Scholar 

  48. Stanley, P. and loffe, E. 1995. Glycosyltransferase mutants—key to new insights in glycobiology. FASEB J. 9: 1436–1444.

    CAS  PubMed  Google Scholar 

  49. Yamashita, K., Koide, N., Endo, T., Iwaki, Y., and Kobata, A. 1989. Altered glycosylation of serum transferrin of patients with hepatocellular carcinoma. J. Biol. Chem. 264: 2415–2423.

    CAS  PubMed  Google Scholar 

  50. Khan, M.W., Musgrave, S.C., and Jenkins, N. 1995. N-linked glycosylation of tissue-plasminogen activator in Namalwa cells. Biochem. Soc. Trans. 23: S99.

    Google Scholar 

  51. Okamoto, M., Nakai, M., Nakayama, C., Yanagi, H., Matsui, H., Noguchi, H., et al. 1991. Purification and characterization of three forms of differently glyco-sylated recombinant human granulocyte-macrophage colony-stimulating factor. Arch. Biochem. Biophys. 286: 562–568.

    CAS  PubMed  Google Scholar 

  52. Tandai, M., Endo, T., Sasaki, S., Masuho, Y., Kochibe, N., and Kobata, A. 1991. Structural study of the sugar moieties of monoclonal antibodies secreted by human-mouse hybridoma. Arch. Biochem. Biophys. 291: 339–348.

    CAS  PubMed  Google Scholar 

  53. Cole, E.S., Higgins, E., Bernasconi, R., Garone, L., and Edmunds, T. 1994. Glycosylation patterns of human proteins expressed in transgenic goat milk. J. Cell Biochem. 265: S18D.

    Google Scholar 

  54. Prieto, P.A., Mukerji, P., Kelder, B., Erney, R., Gonzalez, D., Yun, J.S., et al. 1995. Remodeling of mouse milk glycoconjugates by transgenic expression of a human glycosyltransferase. J. Biol. Chem. 270: 29515–29519.

    CAS  PubMed  Google Scholar 

  55. Miyoshi, E., lhara, Y., Hayashi, N., Fusamoto, H., Kamada, T., and Taniguchi, N. 1995. Transfection of N-acetylglucosaminyltransferase-III gene suppresses expression of hepatitis-B virus in a human hepatoma-cell line, HB611. J. Biol. Chem. 270: 28311–28315.

    CAS  PubMed  Google Scholar 

  56. Newkirk, M.M., Fournier, M.J., and Shiroky, J. 1995. Rheumatoid-factor avidity in patients with rheumatoid-arthritis—identification of pathogenic RFs which correlate with disease parameters and with the Gal0 glycoform of IgG. J. Clin. Immunol. 15: 250–257.

    CAS  PubMed  Google Scholar 

  57. Rademacher, T.W., Williams, P., and Dwek, R.A. 1994. Agalactosyl glycoforms of IgG autoantibodies are pathogenic. Proc. Natl. Acad. Sci. USA 91: 6123–6127.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Siciliano, R.A., Morris, H.R., Bennett, H.P.J., and Dell, A. 1994. O-glycosy-lation mimics N-glycosylation in the 16-kDa fragment of bovine pro-opiomelanocortin—the major O-glycan attached to Thr45 carries SO4-4GalNAc-β1,4GlcNAc-β-1, which is the archetypal nonreducing epitope in the N-glycans of pituitary glycohormones. J. Biol. Chem. 269: 910–920.

    CAS  PubMed  Google Scholar 

  59. Bergwerff, A.A., Vanoostrum, J., Kamerling, J.P., and Vliegenthart, J.F.G. 1995. The major N-linked carbohydrate chains from human urokinase—the occurrence of 4-O-sulfated, (α2,6)-sialylated or (α-1,3)-fucosylated N-acetylgalacto-samine(β-1-4)-N-acetylglucosamine elements. Eur. J. Biochem. 228: 1009–1019.

    CAS  PubMed  Google Scholar 

  60. Skelton, T.P., Kumar, S., Smith, P.L., Beranek, M.C., and Baenziger, J.U. 1992. Pro-opiomelanocortin synthesized by corticotrophs bears asparagine-linked oligosaccharides terminating with SO4-4GalNAc β1,4GlcNAc-β1,2Man α. J. Biol. Chem. 267: 12998–13006.

    CAS  PubMed  Google Scholar 

  61. Smith, P.L. and Baenziger, J.U. 1992. Molecular basis of recognition by the glycoprotein hormone-specific N-acetylgalactosamine-transferase. Proc. Natl. Acad. Sci. USA 89: 329–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fiete, D., Srivastava, V., Hindsgaul, O., and Baenziger, J.U. 1991. A hepatic reticuloendothelial cell receptor specific for SO4-4GalNAc-β1,4GlcNAc-β1,2Man-α that mediates rapid clearance of lutropin. Cell 67: 1103–1110.

    CAS  PubMed  Google Scholar 

  63. Pfeiffer, G., Strube, K.H., and Geyer, R. 1992. Biosynthesis of sulfated glyco-protein-N-glycans present in recombinant human tissue plasminogen activator. Biochem. Biophys. Res. Commun. 189: 1681–1685.

    CAS  PubMed  Google Scholar 

  64. Takei, Y., Chiba, T., Wada, K., Hayashi, H., Yamada, M., Kuwashima, J., et al. 1995. Glycosylated human recombinant interleukin-1-α, neo interleukin-1-α, with d-mannose dimer exhibits selective activities in-vivo. J. Interferon & CytokineRes. 15: 713–719.

    CAS  Google Scholar 

  65. Baudys, M., Uchio, T., Hovgaard, L., Zhu, E.F., Avramoglou, T., Jozefowicz, M., et al. 1995. Glycosylated insulins. J. Controlled Release 36: 151–157.

    CAS  Google Scholar 

  66. Monroe, R.S. and Huber, B.E. 1994. The major form of the murine asialoglyco-protein receptor—cDNA sequence and expression in liver, testis and epididymis. Gene 148: 237–244.

    CAS  PubMed  Google Scholar 

  67. Parekh, R.B., Dwek, R.A., Rademacher, T.W., Opdenakker, G., and Vandamme, J. 1992. Glycosylation of interleukin-6 purified from normal human blood mononuclear-cells. Eur. J. Biochem. 203: 135–141.

    CAS  PubMed  Google Scholar 

  68. Drickamer, K. 1991. Clearing up glycoprotein hormones. Cell 67: 1029–1032.

    CAS  PubMed  Google Scholar 

  69. Misaizu, T., Matsuki, S., Strickland, T.W., Takeuchi, M., Kobata, A., and Takasaki, S. 1995. Role of antennary structure of N-linked sugar chains in renal handling of recombinant human erythropoietin. Blood 86: 4097–4104.

    CAS  PubMed  Google Scholar 

  70. Spellman, M.W., Basa, L.J., Leonard, C.K., Chakel, J.A., O'Connor, J.V., Wilson, S. et al. 1989. Carbohydrate structures of human tissue plasminogen activator expressed in Chinese hamster ovary cells. J. Biol. Chem. 264: 14100–14111.

    CAS  PubMed  Google Scholar 

  71. Hotchkiss, A., Refino, C.J., Leonard, C.K., Oconnor, J.V., Crowley, C., Mccabe, J., et al. 1988. The influence of carbohydrate structure on the clearance of recombinant tissue-type plasminogen-activator. Thromb. Haemost. 60: 255–261.

    CAS  PubMed  Google Scholar 

  72. Patel, T.P., Parekh, R.B., Moellering, B.J., and Prior, C.P. 1992. Different culture methods lead to differences in glycosylation of a murine IgG monoclonal antibody. Biochem. J. 285: 839–845.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Maiorella, B.L., Winkelhake, J., Young, J., Moyer, B., Bauer, R., Hora, M., et al. 1993. Effect of culture conditions on IgM antibody structure, pharmacokinetics and activity. Bio/Technology 11: 387–392.

    CAS  Google Scholar 

  74. Gawlitzek, M., Valley, U., Nimtz, M., Wagner, R., and Conradt, H.S. 1995. Characterization of changes in the glycosylation pattern of recombinant proteins from BHK-21-cells due to different culture conditions. J. Biotechnol. 42: 117–131.

    CAS  PubMed  Google Scholar 

  75. Tachibana, H., Taniguchi, K., Ushio, Y., Teruya, K., Osada, K., and Murakami, H. 1994. Changes of monosaccharide availability of human hybridoma lead to alteration of biological properties of human monoclonal-antibody. Cytotechnology 16: 151–157.

    CAS  PubMed  Google Scholar 

  76. Hayter, P.M., Curling, E.M., Gould, M.L., Baines, A.J., Jenkins, N., Salmon, I., et al. 1993. The effect of dilution rate on CHO cell physiology and recombinant interferon-γ production in glucose-limited chemostat cultures. Biotechnol. Bioeng. 39: 327–335.

    Google Scholar 

  77. Hayter, P.M., Curling, E.M., Baines, A.J., Jenkins, N., Salmon, I., Strange, P.G., et al. 1992. Glucose-limited chemostat culture of Chinese hamster ovary cells producing recombinant human interferon-γ. Biotechnol. Bioeng. 39: 327–335.

    CAS  PubMed  Google Scholar 

  78. Castro, P.M.L., Ison, A.R., Hayter, P.M., and Bull, AT. 1995. The macrohetero-geneity of recombinant human interferon-γ produced by Chinese hamster ovary cells is affected by the protein and lipid content of the culture medium. Biotechnol. Appl. Biochem. 87: 87–100.

    Google Scholar 

  79. Jenkins, N., Castro, P.M.L., Menon, S., Ison, A.P., and Bull, A.T. 1994. Effect of lipid supplements on the production and glycosylation of recombinant interferon-γ expressed in CHO cells. Cytotechnology 15: 209–215.

    CAS  PubMed  Google Scholar 

  80. Rijcken, W.R.P., Overdijk, B., Vandeneijnden, D.H., and Ferwerda, W. 1995. The effect of increasing nucleotide sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem. J. 305: 865–870.

    Google Scholar 

  81. Robinson, D.K., Chan, C.P., Ip, C.Y., Tsai, P.K., Tung, J., Seamans, T.C. et al. 1994. Characterization of a recombinant antibody produced in the course of a high-yield fed-batch process. Biotechnol. Bioeng. 44: 727–735.

    CAS  PubMed  Google Scholar 

  82. Hooker, A.D., Goldman, M.H., Markham, N.H., James, D.C., Ison, A.P., Bull, A.T., et al 1995. N-glycans of recombinant human interferon-γ change during batch culture of chinese-hamster ovary cells. Biotechnol. Bioeng. 48: 639–648.

    CAS  PubMed  Google Scholar 

  83. Gawlitzek, M., Conradt, H.S., and Wagner, R. 1995. Effect of different cell-culture conditions on the polypeptide integrity and N-glycosylation of a recombinant model glycoprotein. Biotechnol. Bioeng. 46: 536–544.

    CAS  PubMed  Google Scholar 

  84. Shelikoff, M., Sinskey, A.J., and Stephanopoulos, G. 1994. The effect of protein-synthesis inhibitors on the glycosylation site occupancy of recombinant human prolactin. Cytotechnology 15: 195–208.

    CAS  PubMed  Google Scholar 

  85. Bulleid, N.J., Bassel-Duby, R.S., Freedman, R.B., Sambrook, J.F., and Gething, M.J. 1992. Cell-free synthesis of enzymically active tissue-type plasminogen activator. Protein folding determines the extent of N-linked glycosylation. Biochem. J. 286: 275–280.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Alien, S., Nairn, H.Y., and Bulleid, N.J. 1995. Intracellular folding of tissue-type plasminogen-activator—effects of disulfide bond formation on N-linked glycosylation and secretion. J. Biol. Chem. 270: 4797–4804.

    Google Scholar 

  87. Hahn, T.J. and Goochee, C.F. 1992. Growth-associated glycosylation of trans-ferrin secreted by HepG2 cells. J. Biol. Chem. 267: 23982–23987.

    CAS  PubMed  Google Scholar 

  88. Datti, A. and Dennis, J.W. 1993. Regulation of UDP-GlcNAc:Gal β 1-3GalNAc-R β 1-6-N-acetylglucosaminyltransferase (GlcNAc to GalNAc) in Chinese hamster ovary cells. J. Biol. Chem. 268: 5409–5416.

    CAS  PubMed  Google Scholar 

  89. Chotigeat, W., Watanapokasin, Y., Mahler, S., and Gray, P.P. 1994. Role of environmental-conditions on the expression levels, glycoform pattern and levels of sialyltransferase for hFSH produced by recombinant CHO cells. Cytotechnology 15: 217–221.

    CAS  PubMed  Google Scholar 

  90. Gebert, C.A. and Gray, P.P. 1995. Expression of FSH in CHO cells .2. stimulation of hFSH expression levels by defined medium supplements. Cytotechnology 17: 13–19.

    CAS  PubMed  Google Scholar 

  91. Shah, S., Lance, P., Smith, T.J., Berenson, C.S., Cohen, S.A., Horvath, P.J. et al. 1992. N-butyrate reduces the expression of β-galactoside α2,6-sialyltransferase in Hep G2 cells. J. Biol. Chem. 267: 10652–10658.

    CAS  PubMed  Google Scholar 

  92. Lin, A.A., Kimura, R. and Miller, W.M. 1993. Production of tPA in recombinant CHO cells under oxygen-limited conditions. Biotechnol. Bioeng. 42: 339–350.

    CAS  PubMed  Google Scholar 

  93. Borys, M.C., Linzer, D.J.H., and Papoutsakis, E.T. 1993. Culture pH affects expression rates and glycosylation of recombinant mouse placental lactogen proteins by Chinese hamster ovary (CHO) cells. Bio/Technology 11: 720–724.

    CAS  Google Scholar 

  94. Andersen, D.C., Goochee, C.F., Cooper, G., and Weitzhandler, M. 1994. Monosaccharide and oligosaccharide analysis of isoelectric focusing-separated and blotted granulocyte-colony-stimulating factor glycoforms using high-pH anion-exchange chromatography with pulsed amperometric detection. Glycobiology 4: 459–467.

    CAS  PubMed  Google Scholar 

  95. Borys, M.C., Linzer, D.I.H., and Papoutsakis, E.T. 1994. Ammonia affects the glycosylation patterns of recombinant mouse placental lactogen-1 by chinese-hamster ovary cells in a pH-dependent manner. Biotechnol. Bioeng. 43: 505–514.

    CAS  PubMed  Google Scholar 

  96. Gramer, M.J. and Goochee, C.F. 1993. Glycosidase activities in chinese-hamster ovary cell lysate and cell-culture supernatant. Biotechnol. Prog. 9: 366–373.

    CAS  PubMed  Google Scholar 

  97. Gramer, M.J., Goochee, C.F., Chock, V., Brousseau, D.T., and Sliwkowski, M.B. 1995. Removal of sialic acid from a glycoprotein in CHO cell supernatant by action of an extracellular CHO cell sialidase. Bio/Technology 13: 692–698.

    CAS  Google Scholar 

  98. Warner, T.G., Chang, J., Ferrari, J., Harris, R., Mcnerney, T., Bennett, G., et al. 1993. Isolation and properties of a soluble sialidase from the culture fluid of chinese-hamster ovary cells. Glycobiology 3: 455–463.

    CAS  PubMed  Google Scholar 

  99. Ferrari, J., Harris, R., and Warner, T.G. 1994. Cloning and expression of a soluble sialidase from chinese-hamster ovary cells—sequence alignment similarities to bacterial sialidases. Glycobiology 4: 367–373.

    CAS  PubMed  Google Scholar 

  100. Gramer, M.J., Schaffer, D.V., Sliwkowski, M.B., and Goochee, C.F. 1994. Purification and characterization of α-l-fucosidase from chinese-hamster ovary cell-culture supernatant. Glycobiology 4: 611–616.

    CAS  PubMed  Google Scholar 

  101. Gramer, M.J. and Goochee, C.F. 1994. Glycosidase activities of the 293 and NSO cell-lines, and of an antibody-producing hybridoma cell-line. Biotechnol. Bioeng. 43: 423–428.

    CAS  PubMed  Google Scholar 

  102. Ackermann, M., Marx, U., and Jager, V. 1995. Influence of cell-derived and media-derived factors on the integrity of a human monoclonal-antibody after secretion into serum-free cell-culture supernatants. Biotechnol. Bioeng. 45: 97–106.

    CAS  PubMed  Google Scholar 

  103. Matsuo, I., Nakahara, Y., Ito, Y., Nukada, T., and Ogawa, T. 1995. Synthesis of a glycopeptide carrying a N-linked core pentasaccharide. Bio-organic & Med. Chem. 3: 1455–1463.

    CAS  Google Scholar 

  104. Nakahara, Y., Shibayama, S., and Ogawa, T. 1996. Rationally designed syntheses of high-mannose and complex type undecasaccharides. Carbohyd. Res. 280: 67–84.

    CAS  Google Scholar 

  105. Herrmann, G.F., Ichikawa, Y., Wandrey, C., Gaeta, F.C.A., Paulson, J.C., and Wong, C.H. 1993. A new multienzyme system for a one-pot synthesis of sialyl oligosaccharides—combined use of β-galactosidase and α(2, 6)-sialyltrans-ferase coupled with regeneration in situ of CMP-sialic acid. Tetrahedron Lett. 34: 3091–3094.

    CAS  Google Scholar 

  106. Galili, U., and Anaraki, F. 1995. α-galactosyl (Ga1-α-1-3Gal-β-1-4GlcNAc-r) epitopes on human-cells—synthesis of the epitope on human red-cells by recombinant primate α1,3-galactosyltransferase expressed in Escherichia coli . Glycobiology 5: 775–782.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, N., Parekh, R. & James, D. Getting the glycosylation right: Implications for the biotechnology industry. Nat Biotechnol 14, 975–981 (1996). https://doi.org/10.1038/nbt0896-975

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0896-975

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing