Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ

Abstract

The pseudogap region of the phase diagram is an important unsolved puzzle in the field of high-transition-temperature (high-Tc) superconductivity, characterized by anomalous physical properties1,2. There are open questions about the number of distinct phases and the possible presence of a quantum-critical point underneath the superconducting dome3,4,5. The picture has remained unclear because there has not been conclusive evidence for a new type of order. Neutron scattering measurements for YBa2Cu3O6+δ (YBCO) resulted in contradictory claims of no6,7 and weak8,9 magnetic order, and the interpretation of muon spin relaxation measurements on YBCO10,11 and of circularly polarized photoemission experiments on Bi2Sr2CaCu2O8+δ(refs 12, 13) has been controversial. Here we use polarized neutron diffraction to demonstrate for the model superconductor HgBa2CuO4+δ (Hg1201) that the characteristic temperature T* marks the onset of an unusual magnetic order. Together with recent results for YBCO14,15, this observation constitutes a demonstration of the universal existence of such a state. The findings appear to rule out theories that regard T* as a crossover temperature16,17,18 rather than a phase transition temperature19,20,21. Instead, they are consistent with a variant of previously proposed charge-current-loop order19,20 that involves apical oxygen orbitals22, and with the notion that many of the unusual properties arise from the presence of a quantum-critical point3,4,5,19.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pseudogap in underdoped Hg1201.
Figure 2: Unusual magnetic order revealed by polarized-neutron diffraction.
Figure 3: Universal pseudogap phase diagram.

Similar content being viewed by others

References

  1. Timusk, T. & Statt, B. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62, 61–122 (1999)

    Article  ADS  CAS  Google Scholar 

  2. Norman, M. R., Pines, D. & Kallin, C. The pseudogap: friend or foe of high T c? Adv. Phys. 54, 715–733 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Laughlin, R. B. A critique of two metals. Adv. Phys. 47, 943–958 (1998)

    Article  ADS  CAS  Google Scholar 

  4. Sachdev, S. Quantum criticality: competing ground states in low dimensions. Science 288, 475–480 (2000)

    Article  ADS  CAS  Google Scholar 

  5. Tallon, J. L. & Loram, J. W. The doping dependence of T*: what is the real high-T c phase diagram? Physica C 349, 53–68 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Lee, S.-H. et al. Search for orbital moments in underdoped cuprate metals. Phys. Rev. B 60, 10405–10417 (1999)

    Article  ADS  CAS  Google Scholar 

  7. Stock, C. et al. Neutron scattering search for static magnetism in oxygen-ordered YBa2Cu3O6.5 . Phys. Rev. B 66, 024505 (2002)

    Article  ADS  Google Scholar 

  8. Sidis, Y. et al. Antiferromagnetic ordering in superconducting YBa2Cu3O6. 5 . Phys. Rev. Lett. 86, 4100–4103 (2001)

    Article  ADS  CAS  Google Scholar 

  9. Mook, H. A. et al. Polarized neutron measurement of magnetic order in YBa2Cu3O6. 45 . Phys. Rev. B 69, 134509 (2004)

    Article  ADS  Google Scholar 

  10. Sonier, J. E. et al. Anomalous weak magnetism in superconducting YBa2Cu3O6+x . Science 292, 1692–1695 (2001)

    Article  ADS  CAS  Google Scholar 

  11. Sonier, J. E. et al. Correlations between charge ordering and local magnetic fields in overdoped YBa2Cu3O6+x . Phys. Rev. B 66, 134501 (2002)

    Article  ADS  Google Scholar 

  12. Kaminski, A. et al. Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high-T c superconductor. Nature 416, 610–613 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Borisenko, S. V. et al. Circular dichroism in angle-resolved photoemission spectra of under- and overdoped Pb-Bi2212. Phys. Rev. Lett. 92, 207001 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Fauqué, B. et al. Magnetic order in the pseudogap phase of high-T c superconductors. Phys. Rev. Lett. 96, 197001 (2006)

    Article  ADS  Google Scholar 

  15. Mook, H. A. et al. Observation of magnetic order in a YBa2Cu3O6.6 superconductor. Phys. Rev. B 78, 020506 (2008)

    Article  ADS  Google Scholar 

  16. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995)

    Article  ADS  CAS  Google Scholar 

  17. Lee, P. A. Pseudogaps in underdoped cuprates. Physica C 317, 194–204 (1999)

    Article  ADS  Google Scholar 

  18. Anderson, P. W. et al. The physics behind high-temperature superconducting cuprates: the ‘plain vanilla’ version of RVB. J. Phys. Cond. Mater. 16, R755–R769 (2004)

    Article  CAS  Google Scholar 

  19. Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997)

    Article  ADS  CAS  Google Scholar 

  20. Varma, C. M. Theory of the pseudogap state of the cuprates. Phys. Rev. B 73, 155113 (2006)

    Article  ADS  Google Scholar 

  21. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    Article  ADS  Google Scholar 

  22. Weber, C., Läuchli, A., Mila, F. & Giamarchi, T. Orbital currents in extended Hubbard models of high-T c cuprates. Preprint available at 〈http://arxiv.org/abs/0803.3983〉.

  23. Putilin, S. N., Antipov, E. V., Chmaissem, O. & Marezio, M. Superconductivity at 94 K in HgBa2CuO4+δ . Nature 362, 226–228 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Eisaki, H. et al. Effect of chemical inhomogeneity in bismuth-based copper oxide superconductors. Phys. Rev. B 69, 064512 (2004)

    Article  ADS  Google Scholar 

  25. Bobroff, J. et al. 17O NMR evidence for a pseudogap in the monolayer HgBa2CuO4+δ . Phys. Rev. Lett. 78, 3757–3760 (1997)

    Article  ADS  CAS  Google Scholar 

  26. Zhao, X. et al. Crystal growth and characterization of the model high-temperature superconductor HgBa2CuO4+δ . Adv. Mater. 18, 3243–3247 (2006)

    Article  CAS  Google Scholar 

  27. Liang, R., Bonn, D. A. & Hardy, W. N. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505 (2006)

    Article  ADS  Google Scholar 

  28. Yamamoto, A. et al. Thermoelectric power and resistivity of HgBa2CuO4+δ over a wide doping range. Phys. Rev. B 63, 024504 (2001)

    Article  ADS  Google Scholar 

  29. Xia, J. et al. Polar Kerr-effect measurement of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008)

    Article  ADS  Google Scholar 

  30. Aji, V. & Varma, C. M. Spin order accompanying loop-current order in cuprate superconductors. Phys. Rev. B 75, 224511 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank H. Alloul and C. Varma for comments. The work at Stanford University was supported by grants from the US Department of Energy and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Greven.

Supplementary information

Supplementary Figure

This file contains Supplementary Figure 1 (PDF 183 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Balédent, V., Barišić, N. et al. Unusual magnetic order in the pseudogap region of the superconductor HgBa2CuO4+δ. Nature 455, 372–375 (2008). https://doi.org/10.1038/nature07251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07251

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing