Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for gate-DNA recognition and bending by type IIA topoisomerases

Abstract

Type II topoisomerases disentangle DNA to facilitate chromosome segregation, and represent a major class of therapeutic targets. Although these enzymes have been studied extensively, a molecular understanding of DNA binding has been lacking. Here we present the structure of a complex between the DNA-binding and cleavage core of Saccharomyces cerevisiae Topo II (also known as Top2) and a gate-DNA segment. The structure reveals that the enzyme enforces a 150° DNA bend through a mechanism similar to that of remodelling proteins such as integration host factor. Large protein conformational changes accompany DNA deformation, creating a bipartite catalytic site that positions the DNA backbone near a reactive tyrosine and a coordinated magnesium ion. This configuration closely resembles the catalytic site of type IA topoisomerases, reinforcing an evolutionary link between these structurally and functionally distinct enzymes. Binding of DNA facilitates opening of an enzyme dimerization interface, providing visual evidence for a key step in DNA transport.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the Topo II DNA-binding and cleavage core bound to DNA.
Figure 2: Topo II severely bends DNA.
Figure 3: Topo II conformational changes accompany DNA binding.
Figure 4: Close up of the Topo II active site.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Coordinates have been deposited in the RSCB PDB under the accession number 2RGR.

References

  1. Wang, J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nature Rev. Mol. Cell Biol. 3, 430–440 (2002)

    Article  CAS  Google Scholar 

  2. Gadelle, D., Filee, J., Buhler, C. & Forterre, P. Phylogenomics of type II DNA topoisomerases. Bioessays 25, 232–242 (2003)

    Article  CAS  Google Scholar 

  3. Hande, K. R. Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim. Biophys. Acta 1400, 173–184 (1998)

    Article  CAS  ADS  Google Scholar 

  4. Hooper, D. C. & Rubinstein, E. Quinolone antimicrobial agents xiv (ASM, Washington DC, 2003)

    Google Scholar 

  5. Roca, J., Berger, J. M., Harrison, S. C. & Wang, J. C. DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc. Natl Acad. Sci. USA 93, 4057–4062 (1996)

    Article  CAS  ADS  Google Scholar 

  6. Roca, J. & Wang, J. C. The capture of a DNA double helix by an ATP-dependent protein clamp: a key step in DNA transport by type II DNA topoisomerases. Cell 71, 833–840 (1992)

    Article  CAS  Google Scholar 

  7. Roca, J. & Wang, J. C. DNA transport by a type II DNA topoisomerase: evidence in favor of a two-gate mechanism. Cell 77, 609–616 (1994)

    Article  CAS  Google Scholar 

  8. Williams, N. L. & Maxwell, A. Probing the two-gate mechanism of DNA gyrase using cysteine cross-linking. Biochemistry 38, 13502–13511 (1999)

    Article  CAS  Google Scholar 

  9. Berger, J. M., Gamblin, S. J., Harrison, S. C. & Wang, J. C. Structure and mechanism of DNA topoisomerase II. Nature 379, 225–232 (1996)

    Article  CAS  ADS  Google Scholar 

  10. Aravind, L., Leipe, D. D. & Koonin, E. V. Toprim—a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 26, 4205–4213 (1998)

    Article  CAS  Google Scholar 

  11. Noble, C. G. & Maxwell, A. The role of GyrB in the DNA cleavage–religation reaction of DNA gyrase: a proposed two metal-ion mechanism. J. Mol. Biol. 318, 361–371 (2002)

    Article  CAS  Google Scholar 

  12. Osheroff, N. Role of the divalent cation in topoisomerase II mediated reactions. Biochemistry 26, 6402–6406 (1987)

    Article  CAS  Google Scholar 

  13. Goto, T., Laipis, P. & Wang, J. C. The purification and characterization of DNA topoisomerases I and II of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 259, 10422–10429 (1984)

    CAS  PubMed  Google Scholar 

  14. Lima, C. D., Wang, J. C. & Mondragon, A. Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature 367, 138–146 (1994)

    Article  CAS  ADS  Google Scholar 

  15. Berger, J. M., Fass, D., Wang, J. C. & Harrison, S. C. Structural similarities between topoisomerases that cleave one or both DNA strands. Proc. Natl Acad. Sci. USA 95, 7876–7881 (1998)

    Article  CAS  ADS  Google Scholar 

  16. Podobnik, M., McInerney, P., O’Donnell, M. & Kuriyan, J. A. TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J. Mol. Biol. 300, 353–362 (2000)

    Article  CAS  Google Scholar 

  17. Keck, J. L., Roche, D. D., Lynch, A. S. & Berger, J. M. Structure of the RNA polymerase domain of E. coli primase. Science 287, 2482–2486 (2000)

    Article  CAS  ADS  Google Scholar 

  18. Howard, M. T., Lee, M. P., Hsieh, T. S. & Griffith, J. D. Drosophila topoisomerase II–DNA interactions are affected by DNA structure. J. Mol. Biol. 217, 53–62 (1991)

    Article  CAS  Google Scholar 

  19. Zechiedrich, E. L. & Osheroff, N. Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers. EMBO J. 9, 4555–4562 (1990)

    Article  CAS  Google Scholar 

  20. Roca, J., Berger, J. M. & Wang, J. C. On the simultaneous binding of eukaryotic DNA topoisomerase II to a pair of double-stranded DNA helices. J. Biol. Chem. 268, 14250–14255 (1993)

    CAS  PubMed  Google Scholar 

  21. Vologodskii, A. V. et al. Mechanism of topology simplification by type II DNA topoisomerases. Proc. Natl Acad. Sci. USA 98, 3045–3049 (2001)

    Article  CAS  ADS  Google Scholar 

  22. Berger, J. M. Structural determination of a 92 kDa fragment of yeast topoisomerase II by X-ray crystallography at 2.7 Å resolution. PhD thesis, Harvard University. (1995)

    Google Scholar 

  23. Fass, D., Bogden, C. E. & Berger, J. M. Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands. Nature Struct. Biol. 6, 322–326 (1999)

    Article  CAS  Google Scholar 

  24. Thomsen, B. et al. Characterization of the interaction between topoisomerase II and DNA by transcriptional footprinting. J. Mol. Biol. 215, 237–244 (1990)

    Article  CAS  Google Scholar 

  25. Orphanides, G. & Maxwell, A. Evidence for a conformational change in the DNA gyrase–DNA complex from hydroxyl radical footprinting. Nucleic Acids Res. 22, 1567–1575 (1994)

    Article  CAS  Google Scholar 

  26. Wang, Y., Thyssen, A., Westergaard, O. & Andersen, A. H. Position-specific effect of ribonucleotides on the cleavage activity of human topoisomerase II. Nucleic Acids Res. 28, 4815–4821 (2000)

    Article  CAS  Google Scholar 

  27. Liu, Q. & Wang, J. C. Identification of active site residues in the “GyrA” half of yeast DNA topoisomerase II. J. Biol. Chem. 273, 20252–20260 (1998)

    Article  CAS  Google Scholar 

  28. Rice, P. A., Yang, S., Mizuuchi, K. & Nash, H. A. Crystal structure of an IHF–DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–1306 (1996)

    Article  CAS  Google Scholar 

  29. Lu, X. J. & Olson, W. K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003)

    Article  CAS  Google Scholar 

  30. Morais Cabral, J. H. et al. Crystal structure of the breakage–reunion domain of DNA gyrase. Nature 388, 903–906 (1997)

    Article  CAS  ADS  Google Scholar 

  31. Tse, Y. C., Kirkegaard, K. & Wang, J. C. Covalent bonds between protein and DNA. Formation of phosphotyrosine linkage between certain DNA topoisomerases and DNA. J. Biol. Chem. 255, 5560–5565 (1980)

    CAS  PubMed  Google Scholar 

  32. Domanico, P. L. & Tse-Dinh, Y. C. Mechanistic studies on E. coli DNA topoisomerase I: divalent ion effects. J. Inorg. Biochem. 42, 87–96 (1991)

    Article  CAS  Google Scholar 

  33. Sugino, A., Higgins, N. P., Brown, P. O., Peebles, C. L. & Cozzarelli, N. R. Energy coupling in DNA gyrase and the mechanism of action of novobiocin. Proc. Natl Acad. Sci. USA 75, 4838–4842 (1978)

    Article  CAS  ADS  Google Scholar 

  34. Osheroff, N. Eukaryotic topoisomerase II. Characterization of enzyme turnover. J. Biol. Chem. 261, 9944–9950 (1986)

    CAS  PubMed  Google Scholar 

  35. Trigueros, S., Salceda, J., Bermudez, I., Fernandez, X. & Roca, J. Asymmetric removal of supercoils suggests how topoisomerase II simplifies DNA topology. J. Mol. Biol. 335, 723–731 (2004)

    Article  CAS  Google Scholar 

  36. Rybenkov, V. V., Ullsperger, C., Vologodskii, A. V. & Cozzarelli, N. R. Simplification of DNA topology below equilibrium values by type II topoisomerases. Science 277, 690–693 (1997)

    Article  CAS  Google Scholar 

  37. Buck, G. R. & Zechiedrich, E. L. DNA disentangling by type-2 topoisomerases. J. Mol. Biol. 340, 933–939 (2004)

    Article  CAS  Google Scholar 

  38. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001)

    Article  CAS  ADS  Google Scholar 

  39. DeLano, W. The PyMOL molecular graphics system. 〈http://www.pymol.org〉 (2002)

  40. Worland, S. T. & Wang, J. C. Inducible overexpression, purification, and active site mapping of DNA topoisomerase II from the yeast Saccharomyces cerevisiae. J. Biol. Chem. 264, 4412–4416 (1989)

    CAS  PubMed  Google Scholar 

  41. Kapust, R. B. & Waugh, D. S. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci. 8, 1668–1674 (1999)

    Article  CAS  Google Scholar 

  42. Davies, D. R. & Hol, W. G. The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes. FEBS Lett. 577, 315–321 (2004)

    Article  CAS  Google Scholar 

  43. MacDowell, A. A. et al. Suite of three protein crystallography beamlines with single superconducting bend magnet as the source. J. Synchrotron Radiat. 11, 447–455 (2004)

    Article  CAS  Google Scholar 

  44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  45. McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C. & Read, R. J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D 61, 458–464 (2005)

    Article  Google Scholar 

  46. Potterton, E., Briggs, P., Turkenburg, M. & Dodson, E. A graphical user interface to the CCP4 program suite. Acta Crystallogr. D 59, 1131–1137 (2003)

    Article  Google Scholar 

  47. Changela, A., DiGate, R. J. & Mondragon, A. Crystal structure of a complex of a type IA DNA topoisomerase with a single-stranded DNA molecule. Nature 411, 1077–1081 (2001)

    Article  CAS  ADS  Google Scholar 

  48. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  49. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  50. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to D. Herschlag for advice on the choice of DNA substrate, and to members of the Berger laboratory for discussions. This work was supported by a NIH Training Grant position to K.C.D. and by the NCI.

Author Contributions K.C.D. and J.M.B. designed the experimental plan, analysed the data, and wrote the paper. K.C.D. performed the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Berger.

Supplementary information

Supplementary Information

The file contains Supplementary Table 1 and Supplementary Figures S1-S9 with Legends, Legend to Supplementary Movie 1 and additional references. (PDF 12278 kb)

Supplementary Movie 1

The file contains Supplementary Movie 1. (MOV 26939 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, K., Berger, J. Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 450, 1201–1205 (2007). https://doi.org/10.1038/nature06396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06396

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing