Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders

Subjects

Abstract

The Stanley Neuropathology Consortium Integrative Database (SNCID, http://sncid.stanleyresearch.org) is a data-mining tool that includes 379 neuropathology data sets from hippocampus, as well as RNA-Seq data measured in 15 well-matched cases in each of four groups: schizophrenia, bipolar disorder (BPD), major depression (MD) and unaffected controls. We analyzed the neuropathology data from the hippocampus to identify those abnormalities that are shared between psychiatric disorders and those that are specific to each disorder. Of the 379 data sets, 20 of them showed a significant abnormality in at least one disorder as compared with unaffected controls. GABAergic markers and synaptic proteins were mainly abnormal in schizophrenia and the two mood disorders, respectively. Two immune/inflammation-related co-expression modules built from RNA-seq data from both schizophrenia and controls combined were associated with disease status, as well as negatively correlated with the GABAergic markers. The correlation between immune-related modules and schizophrenia was replicated using microarray data from an independent tissue collection. Immune/inflammation-related co-expression modules were also built from RNA-seq data from BPD cases or from MD cases but were not preserved when using data from control cases. Moreover, there was no overlap in the genes that comprise the immune/inflammation response-related modules across the different disorders. Thus, there appears to be differential activation of the immune/inflammatory response, as determined by co-expression of genes, which is associated with the major psychiatric disorders and which is also associated with the abnormal neuropathology in the disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122: 593–624.

    PubMed  Google Scholar 

  2. Vawter MP, Freed WJ, Kleinman JE . Neuropathology of bipolar disorder. Biol Psychiatry 2000; 48: 486–504.

    Article  CAS  PubMed  Google Scholar 

  3. Austin MP, Mitchell P, Goodwin GM . Cognitive deficits in depression: possible implications for functional neuropathology. Br J Psychiatry 2001; 178: 200–206.

    Article  CAS  PubMed  Google Scholar 

  4. Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J . Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport 2001; 12: 3257–3262.

    Article  CAS  PubMed  Google Scholar 

  5. Eastwood SL, Harrison PJ . Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 2000; 5: 425–432.

    Article  CAS  PubMed  Google Scholar 

  6. Eastwood SL, Harrison PJ . Decreased mRNA expression of netrin-G1 and netrin-G2 in the temporal lobe in schizophrenia and bipolar disorder. Neuropsychopharmacology 2008; 33: 933–945.

    Article  CAS  PubMed  Google Scholar 

  7. Focking M, Dicker P, English JA, Schubert KO, Dunn MJ, Cotter DR . Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3. Arch Gen Psychiatry 2011; 68: 477–488.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang ZJ, Reynolds GP . A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophr Res 2002; 55: 1–10.

    Article  PubMed  Google Scholar 

  9. Fatemi SH, Earle JA, McMenomy T . Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 2000; 5: 654–663 571.

    Article  CAS  PubMed  Google Scholar 

  10. Thompson Ray M, Weickert CS, Wyatt E, Webster MJ . Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci 2011; 36: 195–203.

    Article  PubMed  Google Scholar 

  11. Vawter MP, Hemperly JJ, Hyde TM, Bachus SE, VanderPutten DM, Howard AL et al. VASE-containing N-CAM isoforms are increased in the hippocampus in bipolar disorder but not schizophrenia. Exp Neurol 1998; 154: 1–11.

    Article  CAS  PubMed  Google Scholar 

  12. Gaughran F, Payne J, Sedgwick PM, Cotter D, Berry M . Hippocampal FGF-2 and FGFR1 mRNA expression in major depression, schizophrenia and bipolar disorder. Brain Res Bull 2006; 70: 221–227.

    Article  CAS  PubMed  Google Scholar 

  13. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH . The stanley foundation brain collection and neuropathology consortium. Schizophr Res 2000; 44: 151–155.

    Article  CAS  PubMed  Google Scholar 

  14. Kim S, Webster MJ . The Stanley Neuropathology Consortium integrative database: a novel, web-based tool for exploring neuropathological markers in psychiatric disorders and the biological processes associated with abnormalities of those markers. Neuropsychopharmacology 2010; 35: 473–482.

    Article  CAS  PubMed  Google Scholar 

  15. Kim S, Webster MJ . Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry 2010; 15: 326–336.

    Article  CAS  PubMed  Google Scholar 

  16. Knable MB, Torrey EF, Webster MJ, Bartko JJ . Multivariate analysis of prefrontal cortical data from the Stanley Foundation Neuropathology Consortium. Brain Res Bull 2001; 55: 651–659.

    Article  CAS  PubMed  Google Scholar 

  17. Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF . Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 2004; 9: 609–620 544.

    Article  CAS  PubMed  Google Scholar 

  18. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB . Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005; 57: 252–260.

    CAS  PubMed  Google Scholar 

  19. Hwang Y, Kim J, Shin JY, Kim JI, Seo JS, Webster MJ et al. Gene expression profiling by mRNA sequencing reveals increased expression of immune/inflammation-related genes in the hippocampus of individuals with schizophrenia. Transl Psychiatry 2013; 3: e321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Trapnell C, Pachter L, Salzberg SL . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009; 25: 1105–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson MD, McCarthy DJ, Smyth GK . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139–140.

    Article  CAS  PubMed  Google Scholar 

  22. Langfelder P, Horvath S . WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 2008; 9: 559.

    Article  Google Scholar 

  23. Leek JT, Storey JD . Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet 2007; 3: 1724–1735.

    Article  CAS  PubMed  Google Scholar 

  24. Hu Z, Mellor J, Wu J, DeLisi C . VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinform 2004; 5: 17.

    Article  Google Scholar 

  25. Langfelder P, Luo R . Oldham MC, Horvath S. Is my network module preserved and reproducible? PLoS Comp Biol 2011; 7: e1001057.

    Article  CAS  Google Scholar 

  26. Kim S, Cho H, Lee D, Webster MJ . Association between SNPs and gene expression in multiple regions of the human brain. Transl Psychiatry 2012; 2: e113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnson WE, Li C, Rabinovic A . Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007; 8: 118–127.

    Article  PubMed  Google Scholar 

  28. Dennis G Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3.

    Article  PubMed  Google Scholar 

  29. DeCarolis NA, Eisch AJ . Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 2010; 58: 884–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun X, Wang JF, Tseng M, Young LT . Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 2006; 31: 189–196.

    PubMed  PubMed Central  Google Scholar 

  31. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S . Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004; 61: 300–308.

    Article  CAS  PubMed  Google Scholar 

  32. Benes FM, Matzilevich D, Burke RE, Walsh J . The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 2006; 11: 241–251.

    Article  CAS  PubMed  Google Scholar 

  33. Nakatani N, Hattori E, Ohnishi T, Dean B, Iwayama Y, Matsumoto I et al. Genome-wide expression analysis detects eight genes with robust alterations specific to bipolar I disorder: relevance to neuronal network perturbation. Hum Mol Genet 2006; 15: 1949–1962.

    Article  CAS  PubMed  Google Scholar 

  34. Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S . Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry 2006; 11: 965–978.

    Article  CAS  PubMed  Google Scholar 

  35. Sequeira A, Mamdani F, Ernst C, Vawter MP, Bunney WE, Lebel V et al. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PloS One 2009; 4: e6585.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Choudary PV, Molnar M, Evans SJ, Tomita H, Li JZ, Vawter MP et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005; 102: 15653–15658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  PubMed  Google Scholar 

  38. Aston C, Jiang L, Sokolov BP . Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 2005; 10: 309–322.

    Article  CAS  PubMed  Google Scholar 

  39. Akula N, Barb J, Jiang X, Wendland JR, Choi KH, Sen SK et al. RNA-sequencing of the brain transcriptome implicates dysregulation of neuroplasticity, circadian rhythms and GTPase binding in bipolar disorder. Mol Psychiatry 2014; 19: 1179–1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Torkamani A, Dean B, Schork NJ, Thomas EA . Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Res 2010; 20: 403–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gaiteri C, Sibille E . Differentially expressed genes in major depression reside on the periphery of resilient gene coexpression networks. Front Neurosci 2011; 5: 95.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380–384.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Roussos P, Katsel P, Davis KL, Siever LJ, Haroutunian V . A system-level transcriptomic analysis of schizophrenia using postmortem brain tissue samples. Arch Gen Psychiatry 2012; 69: 1205–1213.

    Article  PubMed  Google Scholar 

  44. Chen C, Cheng L, Grennan K, Pibiri F, Zhang C, Badner JA et al. Two gene co-expression modules differentiate psychotics and controls. Mol Psychiatry 2013; 18: 1308–1314.

    Article  CAS  PubMed  Google Scholar 

  45. Mistry M, Gillis J, Pavlidis P . Meta-analysis of gene coexpression networks in the post-mortem prefrontal cortex of patients with schizophrenia and unaffected controls. BMC Neurosci 2013; 14: 105.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD . The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012; 28: 882–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mostafavi S, Battle A, Zhu X, Urban AE, Levinson D, Montgomery SB et al. Normalizing RNA-sequencing data by modeling hidden covariates with prior knowledge. PloS One 2013; 8: e68141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rydmark I, Wahlberg K, Ghatan PH, Modell S, Nygren A, Ingvar M et al. Neuroendocrine, cognitive and structural imaging characteristics of women on longterm sickleave with job stress-induced depression. Biol Psychiatry 2006; 60: 867–873.

    Article  CAS  PubMed  Google Scholar 

  49. Radulovic J, Ruhmann A, Liepold T, Spiess J . Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J Neurosci 1999; 19: 5016–5025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 2006; 314: 1461–1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu Y, Yu JT, Zhang W, Zong Y, Lu RC, Zhou J et al. Interleukin-23 receptor polymorphisms are associated with Alzheimer's disease in Han Chinese. J Neuroimmunol 2014; 271: 43–48.

    Article  CAS  PubMed  Google Scholar 

  52. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007; 131: 1164–1178.

    Article  CAS  PubMed  Google Scholar 

  53. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012; 18: 1413–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T et al. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 2008; 13: 717–728.

    Article  CAS  PubMed  Google Scholar 

  55. Faust D, Loos M . In vitro modulation of C1q mRNA expression and secretion by interleukin-1, interleukin-6, and interferon-gamma in resident and stimulated murine peritoneal macrophages. Immunobiology 2002; 206: 368–376.

    Article  CAS  PubMed  Google Scholar 

  56. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y . RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 2008; 18: 1509–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang Z, Gerstein M, Snyder M . RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10: 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Al-Amin MM, Nasir Uddin MM, Mahmud Reza H . Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin Psychopharmacol Neurosci 2013; 11: 144–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B . Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry 2011; 70: 663–671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tourjman V, Kouassi E, Koue ME, Rocchetti M, Fortin-Fournier S, Fusar-Poli P et al. Antipsychotics' effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res 2013; 151: 43–47.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the investigators who generated the original data in the SNCID, and their many collaborators, who made this database possible. We also thank Jonathan Cohen for technical support. We specially thank the Keymind Company for their technical assistance with the database, in particular Marvin Suo. DL and YH were supported by the Bio-Synergy Research Project (NRF-2012M3A9C4048758) of the Korean Ministry of Science, ICT and Future Planning through the Korean National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Hwang, Y., Webster, M. et al. Differential activation of immune/inflammatory response-related co-expression modules in the hippocampus across the major psychiatric disorders. Mol Psychiatry 21, 376–385 (2016). https://doi.org/10.1038/mp.2015.79

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2015.79

This article is cited by

Search

Quick links