Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania

Abstract

The glutamate receptor 6 (GluR6 or GRIK2, one of the kainate receptors) gene resides in a genetic linkage region (6q21) associated with bipolar disorder (BPD), but its function in affective regulation is unknown. Compared with wild-type (WT) and GluR5 knockout (KO) mice, GluR6 KO mice were more active in multiple tests and super responsive to amphetamine. In a battery of specific tests, GluR6 KO mice also exhibited less anxious or more risk-taking type behavior and less despair-type manifestations, and they also had more aggressive displays. Chronic treatment with lithium, a classic antimanic mood stabilizer, reduced hyperactivity, aggressive displays and some risk-taking type behavior in GluR6 KO mice. Hippocampal and prefrontal cortical membrane levels of GluR5 and KA-2 receptors were decreased in GluR6 KO mice, and chronic lithium treatment did not affect these decreases. The membrane levels of other glutamatergic receptors were not significantly altered by GluR6 ablation or chronic lithium treatment. Together, these biochemical and behavioral results suggest a unique role for GluR6 in controlling abnormalities related to the behavioral symptoms of mania, such as hyperactivity or psychomotor agitation, aggressiveness, driven or increased goal-directed pursuits, risk taking and supersensitivity to psychostimulants. Whether GluR6 perturbation is involved in the mood elevation or thought disturbance of mania and the cyclicity of BPD are unknown. The molecular mechanism underlying the behavioral effects of lithium in GluR6 KO mice remains to be elucidated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Goodwin FK, Jamison KR . Manic-Depressive Illness: Bipolar Disorders and Recurrent Depression. Oxford University Press: New York, 2007.

    Google Scholar 

  2. Baum A, Akula N, Cabenero M, Cardona I, Corona W, Klemens B et al. A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 2007; 13: 197–207.

    Article  Google Scholar 

  3. Kato T . Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 2007; 61: 3–19.

    Article  CAS  Google Scholar 

  4. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14 000 cases of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–678.

    Article  Google Scholar 

  5. Buervenich S, Detera-Wadleigh SD, Akula N, Thomas CJM, Kassem L, Rezvani A et al. Fine mapping on chromosome 6q in the NIMH Genetics Initiative bipolar pedigrees (abstract 1882). Annual Meeting of The American Society of Human Genetics. Los Angeles, CA, 2003 (http://www.genetics.faseb.org/genetics/ashg03s/index.shtml).

  6. Dick DM, Foroud T, Flury L, Bowman ES, Miller MJ, Rau NL et al. Genomewide linkage analyses of bipolar disorder: a new sample of 250 pedigrees from the National Institute of Mental Health Genetics Initiative. Am J Hum Genet 2003; 73: 107–114.

    Article  CAS  Google Scholar 

  7. McQueen MB, Devlin B, Faraone SV, Nimgaonkar VL, Sklar P, Smoller JW et al. Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet 2005; 77: 582–595.

    Article  CAS  Google Scholar 

  8. Schulze TG, Buervenich S, Badner JA, Steele CJ, Detera-Wadleigh SD, Dick DM et al. Loci on chromosomes 6q and 6p interact to increase susceptibility to bipolar affective disorder in the national institute of mental health genetics initiative pedigrees. Biol Psychiatry 2004; 56: 18–23.

    Article  CAS  Google Scholar 

  9. Schumacher J, Kaneva R, Jamra RA, Diaz GO, Ohlraun S, Milanova V et al. Genomewide scan and fine-mapping linkage studies in four European samples with bipolar affective disorder suggest a new susceptibility locus on chromosome 1p35–p36 and provides further evidence of loci on chromosome 4q31 and 6q24. Am J Hum Genet 2005; 77: 1102–1111.

    Article  CAS  Google Scholar 

  10. Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH . Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology 2007; 14: 14.

    Google Scholar 

  11. Laje G, Buervenich S, Manji HK, Rush AJ, Wilson A, Charney DS et al. Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am J Psychiatry 2007; 164: 1530–1538.

    Article  Google Scholar 

  12. McElroy SL, Kotwal R, Kaneria R, Keck PEJ . Antidepressants and suicidal behavior in bipolar disorder. Bipolar Disord 2006; 8: 596–617.

    Article  CAS  Google Scholar 

  13. Yerevanian BI, Koek RJ, Mintz J, Akiskal HS . Bipolar pharmacotherapy and suicidal behavior Part 2. The impact of antidepressants. J Affect Disord 2007; 103: 5–11.

    Article  CAS  Google Scholar 

  14. Li H, Chen A, Xing G, Wei ML, Rogawski MA . Kainate receptor-mediated heterosynaptic facilitation in the amygdala. Nat Neurosci 2001; 4: 612–620.

    Article  CAS  Google Scholar 

  15. Wisden W, Seeburg PH . A complex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 1993; 13: 3582–3598.

    Article  CAS  Google Scholar 

  16. Lerma J . Kainate receptor physiology. Curr Opin Pharmacol 2006; 6: 89–97.

    Article  CAS  Google Scholar 

  17. Bortolotto ZA, Nistico R, More JC, Jane DE, Collingridge GL . Kainate receptors and mossy fiber LTP. Neurotoxicology 2005; 26: 769–777.

    Article  CAS  Google Scholar 

  18. Braga MF, Aroniadou-Anderjaska V, Li H . The physiological role of kainate receptors in the amygdala. Mol Neurobiol 2004; 30: 127–141.

    Article  CAS  Google Scholar 

  19. Rodriguez-Moreno A, Herreras O, Lerma J . Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 1997; 19: 893–901.

    Article  CAS  Google Scholar 

  20. Frerking M, Schmitz D, Zhou Q, Johansen J, Nicoll RA . Kainate receptors depress excitatory synaptic transmission at CA3 → CA1 synapses in the hippocampus via a direct presynaptic action. J Neurosci 2001; 21: 2958–2966.

    Article  CAS  Google Scholar 

  21. Melyan Z, Lancaster B, Wheal HV . Metabotropic regulation of intrinsic excitability by synaptic activation of kainate receptors. J Neurosci 2004; 24: 4530–4534.

    Article  CAS  Google Scholar 

  22. Melyan Z, Wheal HV, Lancaster B . Metabotropic-mediated kainate receptor regulation of IsAHP and excitability in pyramidal cells. Neuron 2002; 34: 107–114.

    Article  CAS  Google Scholar 

  23. Einat H . Modeling facets of mania—new directions related to the notion of endophenotypes. J Psychopharmacol 2006; 20: 714–722.

    Article  Google Scholar 

  24. Cryan JF, Holmes A . The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4: 775–790.

    Article  CAS  Google Scholar 

  25. Fisahn A, Contractor A, Traub RD, Buhl EH, Heinemann SF, McBain CJ . Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. J Neurosci 2004; 24: 9658–9668.

    Article  CAS  Google Scholar 

  26. Crawley JN . What's Wrong with My Mouse: Behavioral Phenotyping of Transgenic and Knockout Mice, 2nd edn. Wiley: New York, 2007.

    Book  Google Scholar 

  27. El-Ghundi M, O'Dowd BF, George SR . Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res 2001; 892: 86–93.

    Article  CAS  Google Scholar 

  28. Engel SR, Creson TK, Hao Y, Shen Y, Maeng S, Nekrasova T et al. The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry; advance online publication 29 January 2008; doi: 10.1038/sj.mp.4002135.

    Article  Google Scholar 

  29. Einat H, Yuan P, Manji HK . Increased anxiety-like behaviors and mitochondrial dysfunction in mice with targeted mutation of the Bcl-2 gene: further support for the involvement of mitochondrial function in anxiety disorders. Behav Brain Res 2005; 165: 172–180.

    Article  CAS  Google Scholar 

  30. Maeng S, Zarate Jr CA, Du J, Schloesser R, McCammon J, Chen G et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of AMPA receptors. Biol Psychiatry 2007; 63: 349–352.

    Article  Google Scholar 

  31. Gould TD, Chen G, Manji HK . In vivo evidence in the brain for lithium inhibition of glycogen synthase kinase-3. Neuropsychopharmacology 2004; 29: 32–38.

    Article  CAS  Google Scholar 

  32. Du J, Gray NA, Falke CA, Chen W, Yuan P, Szabo ST et al. Modulation of synaptic plasticity by antimanic agents: the role of AMPA glutamate receptor subunit 1 synaptic expression. J Neurosci 2004; 24: 6578–6589.

    Article  CAS  Google Scholar 

  33. Mulle C, Sailer A, Perez-Otano I, Dickinson-Anson H, Castillo PE, Bureau I et al. Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature 1998; 392: 601–605.

    Article  CAS  Google Scholar 

  34. Mulle C, Sailer A, Swanson GT, Brana C, O'Gorman S, Bettler B et al. Subunit composition of kainate receptors in hippocampal interneurons. Neuron 2000; 28: 475–484.

    Article  CAS  Google Scholar 

  35. Miczek KA, Maxson SC, Fish EW, Faccidomo S . Aggressive behavioral phenotypes in mice. Behav Brain Res 2001; 125: 167–181.

    Article  CAS  Google Scholar 

  36. Mi XJ, Chen SW, Wang WJ, Wang R, Zhang YJ, Li WJ et al. Anxiolytic-like effect of paeonol in mice. Pharmacol Biochem Behav 2005; 81: 683–687.

    Article  CAS  Google Scholar 

  37. Suaudeau C, Rinaldi D, Lepicard E, Venault P, Crusio WE, Costentin J et al. Divergent levels of anxiety in mice selected for differences in sensitivity to a convulsant agent. Physiol Behav 2000; 71: 517–523.

    Article  CAS  Google Scholar 

  38. Cryan JF, Mombereau C . In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004; 9: 326–357.

    Article  CAS  Google Scholar 

  39. Belmaker RH . Bipolar disorder. N Engl J Med 2004; 351: 476–486.

    Article  CAS  Google Scholar 

  40. Goodwin FK, Jamison KR . Manic-Depressive Illness. Oxford University Press: New York, 1990.

    Google Scholar 

  41. McKinney R, Bunney WE . Animal models of depression. I. Review of evidence: implications for research. Arch Gen Psychiatry 1969; 21: 240–248.

    Article  Google Scholar 

  42. Willner P . The validity of animal models for depression. Psychopharmacology (Berl) 1984; 83: 1–16.

    Article  CAS  Google Scholar 

  43. Jaskolski F, Coussen F, Mulle C . Subcellular localization and trafficking of kainate receptors. Trends Pharmacol Sci 2005; 26: 20–26.

    Article  CAS  Google Scholar 

  44. Jaskolski F, Coussen F, Nagarajan N, Normand E, Rosenmund C, Mulle C . Subunit composition and alternative splicing regulate membrane delivery of kainate receptors. J Neurosci 2004; 24: 2506–2515.

    Article  CAS  Google Scholar 

  45. Ren Z, Riley NJ, Garcia EP, Sanders JM, Swanson GT, Marshall J . Multiple trafficking signals regulate kainate receptor KA2 subunit surface expression. J Neurosci 2003; 23: 6608–6616.

    Article  Google Scholar 

  46. Ren Z, Riley NJ, Needleman LA, Sanders JM, Swanson GT, Marshall J . Cell surface expression of GluR5 kainate receptors is regulated by an endoplasmic reticulum retention signal. J Biol Chem 2003; 278: 52700–52709.

    Article  CAS  Google Scholar 

  47. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47: 351–354.

    Article  CAS  Google Scholar 

  48. Zarate Jr CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006; 63: 856–864.

    Article  CAS  Google Scholar 

  49. Kato T, Kubota M, Kasahara T . Animal models of bipolar disorder. Neurosci Biobehav Rev 2007; 31: 832–842.

    Article  CAS  Google Scholar 

  50. Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci 2006; 26: 9022–9029.

    Article  CAS  Google Scholar 

  51. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V et al. Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 2007; 104: 6406–6411.

    Article  CAS  Google Scholar 

  52. Kasahara T, Kubota M, Miyauchi T, Noda Y, Mouri A, Nabeshima T et al. Mice with neuron-specific accumulation of mitochondrial DNA mutations show mood disorder-like phenotypes. Mol Psychiatry 2006; 11: 577–593.

    Article  CAS  Google Scholar 

  53. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 2002; 34: 807–820.

    Article  CAS  Google Scholar 

  54. Selcher JC, Nekrasova T, Paylor R, Landreth GE, Sweatt JD . Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learn Mem 2001; 8: 11–19.

    Article  CAS  Google Scholar 

  55. Ferguson SM, Fasano S, Yang P, Brambilla R, Robinson TE . Knockout of ERK1 enhances cocaine-evoked immediate early gene expression and behavioral plasticity. Neuropsychopharmacology 2006; 31: 2660–2668.

    Article  CAS  Google Scholar 

  56. McClung CA, Sidiropoulou K, Vitaterna MH, Takahashi JS, White FJ, Cooper DC et al. Regulation of dopaminergic transmission and cocaine reward by the clock gene. Proc Natl Acad Sci USA 2005; 102: 9377–9381.

    Article  CAS  Google Scholar 

  57. Fisahn A, Heinemann SF, McBain CJ . The kainate receptor subunit GluR6 mediates metabotropic regulation of the slow and medium AHP currents in mouse hippocampal neurons. J Physiol 2005; 562: 199–203.

    Article  CAS  Google Scholar 

  58. Grabauskas G, Lancaster B, O'Connor V, Wheal H . Protein kinase signaling requirements for metabotropic action of kainate receptors in rat CA1 pyramidal neurons. J Physiol 2006; 7: 7.

    Google Scholar 

Download references

Acknowledgements

We thank Ioline Henter for providing outstanding editorial assistance. This work was supported by the Intramural Program of the NIMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H K Manji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaltiel, G., Maeng, S., Malkesman, O. et al. Evidence for the involvement of the kainate receptor subunit GluR6 (GRIK2) in mediating behavioral displays related to behavioral symptoms of mania. Mol Psychiatry 13, 858–872 (2008). https://doi.org/10.1038/mp.2008.20

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.20

Keywords

This article is cited by

Search

Quick links