Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Proteasome inhibitors in the treatment of multiple myeloma

Abstract

Targeting intracellular protein turnover by inhibiting the ubiquitin–proteasome pathway as a strategy for cancer therapy is a new addition to our chemotherapeutic armamentarium, and has seen its greatest successes against multiple myeloma. The first-in-class proteasome inhibitor, bortezomib, was initially approved for treatment of patients in the relapsed/refractory setting as a single agent, and was recently shown to induce even greater benefits as part of rationally designed combinations that overcome chemoresistance. Modulation of proteasome function is also a rational approach to achieve chemosensitization to other antimyeloma agents, and bortezomib has now been incorporated into the front-line setting. Bortezomib-based induction regimens are able to achieve higher overall response rates and response qualities than was the case with prior standards of care, and unlike these older approaches, maintain efficacy in patients with clinically and molecularly defined high-risk disease. Second-generation proteasome inhibitors with novel properties, such as NPI-0052 and carfilzomib, are entering the clinical arena, and showing evidence of antimyeloma activity. In this spotlight review, we provide an overview of the current state of the art use of bortezomib and other proteasome inhibitors against multiple myeloma, and highlight areas for future study that will further optimize our ability to benefit patients with this disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kyle RA, Rajkumar SV . Multiple myeloma. Blood 2008; 111: 2962–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goldberg AL . Nobel committee tags ubiquitin for distinction. Neuron 2005; 45: 339–344.

    Article  CAS  PubMed  Google Scholar 

  3. Ciechanover A . Intracellular protein degradation from a vague idea through the lysosome and the ubiquitin–proteasome system and on to human diseases and drug targeting: Nobel Lecture, December 8, 2004. Ann NY Acad Sci 2007; 1116: 1–28.

    Article  PubMed  Google Scholar 

  4. Orlowski M, Wilk S . Catalytic activities of the 20S proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys 2000; 383: 1–16.

    Article  CAS  PubMed  Google Scholar 

  5. Rechsteiner MC . Ubiquitin-mediated proteolysis: an ideal pathway for systems biology analysis. Adv Exp Med Biol 2004; 547: 49–59.

    Article  CAS  PubMed  Google Scholar 

  6. Goldberg AL . Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 2007; 35 (Part 1): 12–17.

    Article  CAS  PubMed  Google Scholar 

  7. Vinitsky A, Michaud C, Powers JC, Orlowski M . Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry 1992; 31: 9421–9428.

    Article  CAS  PubMed  Google Scholar 

  8. Vinitsky A, Cardozo C, Sepp-Lorenzino L, Michaud C, Orlowski M . Inhibition of the proteolytic activity of the multicatalytic proteinase complex (proteasome) by substrate-related peptidyl aldehydes. J Biol Chem 1994; 269: 29860–29866.

    CAS  PubMed  Google Scholar 

  9. Imajoh-Ohmi KT, Sugiyama S, Tanaka K, Omura S, Kikuchi H . Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells. Biochem Biophys Res Commun 1995; 217: 1070–1077.

    Article  CAS  PubMed  Google Scholar 

  10. Shinohara K, Tomioka M, Nakano H, Tone S, Ito H, Kawashima S . Apoptosis induction resulting from proteasome inhibition. Biochem J 1996; 317: 385–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Orlowski RZ, Eswara JR, Lafond-Walker A, Grever MR, Orlowski M, Dang CV . Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor. Cancer Res 1998; 58: 4342–4348.

    CAS  PubMed  Google Scholar 

  12. Delic J, Masdehors P, Omura S, Cosset JM, Dumont J, Binet JL et al. The proteasome inhibitor lactacystin induces apoptosis and sensitizes chemo- and radioresistant human chronic lymphocytic leukaemia lymphocytes to TNF-alpha-initiated apoptosis. Br J Cancer 1998; 77: 1103–1107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chauhan D, Hideshima T, Mitsiades C, Richardson P, Anderson KC . Proteasome inhibitor therapy in multiple myeloma. Mol Cancer Ther 2005; 4: 686–692.

    Article  CAS  PubMed  Google Scholar 

  14. Li ZW, Chen H, Campbell RA, Bonavida B, Berenson JR . NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol 2008; 15: 391–399.

    Article  CAS  PubMed  Google Scholar 

  15. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61: 3071–3076.

    CAS  PubMed  Google Scholar 

  16. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994; 78: 761–771.

    Article  CAS  PubMed  Google Scholar 

  19. Meister S, Schubert U, Neubert K, Herrmann K, Burger R, Gramatzki M et al. Extensive immunoglobulin production sensitizes myeloma cells for proteasome inhibition. Cancer Res 2007; 67: 1783–1792.

    Article  CAS  PubMed  Google Scholar 

  20. Orlowski RZ, Kuhn DJ . Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 2008; 14: 1649–1657.

    Article  CAS  PubMed  Google Scholar 

  21. Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S et al. Phase I trial of the proteasome inhibitor PS-341 in patients with refractory hematologic malignancies. J Clin Oncol 2002; 20: 4420–4427.

    Article  CAS  PubMed  Google Scholar 

  22. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 2003; 348: 2609–2617.

    Article  CAS  PubMed  Google Scholar 

  23. Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG et al. A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 2004; 127: 165–172.

    Article  CAS  PubMed  Google Scholar 

  24. Jagannath S, Barlogie B, Berenson JR, Siegel DS, Irwin D, Richardson PG et al. Updated survival analyses after prolonged follow-up of the phase 2, multicenter CREST study of bortezomib in relapsed or refractory multiple myeloma. Br J Haematol 2008; 143: 537–540.

    PubMed  Google Scholar 

  25. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin DH et al. Extended follow-up of a phase II trial in relapsed, refractory multiple myeloma: final time-to-event results from the SUMMIT trial. Cancer 2006; 106: 1316–1319.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar SK, Therneau TM, Gertz MA, Lacy MQ, Dispenzieri A, Rajkumar SV et al. Clinical course of patients with relapsed multiple myeloma. Mayo Clin Proc 2004; 79: 867–874.

    Article  CAS  PubMed  Google Scholar 

  27. Lonial S, Waller EK, Richardson PG, Jagannath S, Orlowski RZ, Giver CR et al. Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 2005; 106: 3777–3784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Badros A, Goloubeva O, Dalal JS, Can I, Thompson J, Rapoport AP et al. Neurotoxicity of bortezomib therapy in multiple myeloma: a single-center experience and review of the literature. Cancer 2007; 110: 1042–1049.

    Article  CAS  PubMed  Google Scholar 

  29. Richardson PG, Briemberg H, Jagannath S, Wen PY, Barlogie B, Berenson J et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 2006; 24: 3113–3120.

    Article  CAS  PubMed  Google Scholar 

  30. Richardson PG, Sonneveld P, Schuster MW, Stadtmauer EA, Facon T, Harousseau JL et al. Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol 2009; 144: 895–903.

    Article  CAS  PubMed  Google Scholar 

  31. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 2005; 352: 2487–2498.

    Article  CAS  PubMed  Google Scholar 

  32. Chanan-Khan A, Sonneveld P, Schuster MW, Stadtmauer EA, Facon T, Harousseau JL et al. Analysis of herpes zoster events among bortezomib-treated patients in the phase III APEX study. J Clin Oncol 2008; 26: 4784–4790.

    Article  CAS  PubMed  Google Scholar 

  33. Kim SJ, Kim K, Kim BS, Lee HJ, Kim H, Lee NR et al. Bortezomib and the increased incidence of herpes zoster in patients with multiple myeloma. Clin Lymphoma Myeloma 2008; 8: 237–240.

    Article  CAS  PubMed  Google Scholar 

  34. Vickrey E, Allen S, Mehta J, Singhal S . Acyclovir to prevent reactivation of varicella zoster virus (herpes zoster) in multiple myeloma patients receiving bortezomib therapy. Cancer 2009; 115: 229–232.

    Article  CAS  PubMed  Google Scholar 

  35. Richardson PG, Sonneveld P, Schuster M, Irwin D, Stadtmauer E, Facon T et al. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 2007; 110: 3557–3560.

    Article  CAS  PubMed  Google Scholar 

  36. Hainsworth JD, Spigel DR, Barton J, Farley C, Schreeder M, Hon J et al. Weekly treatment with bortezomib for patients with recurrent or refractory multiple myeloma: a phase 2 trial of the Minnie Pearl Cancer Research Network. Cancer 2008; 113: 765–771.

    Article  CAS  PubMed  Google Scholar 

  37. Suvannasankha A, Smith GG, Juliar BE, Abonour R . Weekly bortezomib/methylprednisolone is effective and well tolerated in relapsed multiple myeloma. Clin Lymphoma Myeloma 2006; 7: 131–134.

    Article  CAS  PubMed  Google Scholar 

  38. Terpos E, Politou M, Rahemtulla A . Tumour lysis syndrome in multiple myeloma after bortezomib (VELCADE) administration. J Cancer Res Clin Oncol 2004; 130: 623–625.

    Article  CAS  PubMed  Google Scholar 

  39. Sezer O, Vesole DH, Singhal S, Richardson P, Stadtmauer E, Jakob C et al. Bortezomib-induced tumor lysis syndrome in multiple myeloma. Clin Lymphoma Myeloma 2006; 7: 233–235.

    Article  CAS  PubMed  Google Scholar 

  40. Furtado M, Rule S . Bortezomib-associated tumor lysis syndrome in multiple myeloma. Leuk Lymphoma 2008; 49: 2380–2382.

    Article  PubMed  Google Scholar 

  41. Miyakoshi S, Kami M, Yuji K, Matsumura T, Takatoku M, Sasaki M et al. Severe pulmonary complications in Japanese patients after bortezomib treatment for refractory multiple myeloma. Blood 2006; 107: 3492–3494.

    Article  CAS  PubMed  Google Scholar 

  42. Ohri A, Arena FP . Severe pulmonary complications in African-American patient after bortezomib therapy. Am J Ther 2006; 13: 553–555.

    Article  PubMed  Google Scholar 

  43. Shimazaki C, Kobayashi Y, Inaba T, Taniwaki M . Dexamethasone reduces the risk of bortezomib-induced pulmonary complications in Japanese myeloma patients. Int J Hematol 2006; 84: 90–91.

    Article  PubMed  Google Scholar 

  44. Wu KL, Heule F, Lam K, Sonneveld P . Pleomorphic presentation of cutaneous lesions associated with the proteasome inhibitor bortezomib in patients with multiple myeloma. J Am Acad Dermatol 2006; 55: 897–900.

    Article  PubMed  Google Scholar 

  45. Rosinol L, Montoto S, Cibeira MT, Blade J . Bortezomib-induced severe hepatitis in multiple myeloma: a case report. Arch Intern Med 2005; 165: 464–465.

    Article  PubMed  Google Scholar 

  46. Berenson JR, Jagannath S, Barlogie B, Siegel DT, Alexanian R, Richardson PG et al. Safety of prolonged therapy with bortezomib in relapsed or refractory multiple myeloma. Cancer 2005; 104: 2141–2148.

    Article  CAS  PubMed  Google Scholar 

  47. Cavaletti G, Gilardini A, Canta A, Rigamonti L, Rodriguez-Menendez V, Ceresa C et al. Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol 2007; 204: 317–325.

    Article  CAS  PubMed  Google Scholar 

  48. Argyriou AA, Iconomou G, Kalofonos HP . Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 2008; 112: 1593–1599.

    Article  CAS  PubMed  Google Scholar 

  49. Poruchynsky MS, Sackett DL, Robey RW, Ward Y, Annunziata C, Fojo T . Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells: a possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. Cell Cycle 2008; 7: 940–949.

    Article  CAS  PubMed  Google Scholar 

  50. Ravaglia S, Corso A, Piccolo G, Lozza A, Alfonsi E, Mangiacavalli S et al. Immune-mediated neuropathies in myeloma patients treated with bortezomib. Clin Neurophysiol 2008; 119: 2507–2512.

    Article  CAS  PubMed  Google Scholar 

  51. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al. Safety and efficacy of bortezomib in high-risk and elderly patients with relapsed multiple myeloma. Br J Haematol 2007; 137: 429–435.

    Article  CAS  PubMed  Google Scholar 

  52. Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D et al. Clinical factors predictive of outcome with bortezomib in patients with relapsed, refractory multiple myeloma. Blood 2005; 106: 2977–2981.

    Article  CAS  PubMed  Google Scholar 

  53. Jagannath S, Barlogie B, Berenson JR, Singhal S, Alexanian R, Srkalovic G et al. Bortezomib in recurrent and/or refractory multiple myeloma. Initial clinical experience in patients with impaired renal function. Cancer 2005; 103: 1195–1200.

    Article  CAS  PubMed  Google Scholar 

  54. Chanan-Khan AA, Kaufman JL, Mehta J, Richardson PG, Miller KC, Lonial S et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood 2007; 109: 2604–2606.

    Article  CAS  PubMed  Google Scholar 

  55. San-Miguel JF, Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA et al. Efficacy and safety of bortezomib in patients with renal impairment: results from the APEX phase 3 study. Leukemia 2008; 22: 842–849.

    Article  CAS  PubMed  Google Scholar 

  56. Malani AK, Gupta V, Rangineni R . Bortezomib and dexamethasone in previously untreated multiple myeloma associated with renal failure and reversal of renal failure. Acta Haematologica 2006; 116: 255–258.

    Article  CAS  PubMed  Google Scholar 

  57. Kastritis E, Anagnostopoulos A, Roussou M, Gika D, Matsouka C, Barmparousi D et al. Reversibility of renal failure in newly diagnosed multiple myeloma patients treated with high dose dexamethasone-containing regimens and the impact of novel agents. Haematologica 2007; 92: 546–549.

    Article  CAS  PubMed  Google Scholar 

  58. Ludwig H, Drach J, Graf H, Lang A, Meran JG . Reversal of acute renal failure by bortezomib-based chemotherapy in patients with multiple myeloma. Haematologica 2007; 92: 1411–1414.

    Article  CAS  PubMed  Google Scholar 

  59. Jagannath S, Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA et al. Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 2007; 21: 151–157.

    Article  CAS  PubMed  Google Scholar 

  60. Sagaster V, Ludwig H, Kaufmann H, Odelga V, Zojer N, Ackermann J et al. Bortezomib in relapsed multiple myeloma: response rates and duration of response are independent of a chromosome 13q-deletion. Leukemia 2007; 21: 164–168.

    Article  CAS  PubMed  Google Scholar 

  61. Chang H, Trieu Y, Qi X, Xu W, Stewart KA, Reece D . Bortezomib therapy response is independent of cytogenetic abnormalities in relapsed/refractory multiple myeloma. Leuk Res 2007; 31: 779–782.

    Article  CAS  PubMed  Google Scholar 

  62. Zangari M, Esseltine D, Lee CK, Barlogie B, Elice F, Burns MJ et al. Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 2005; 131: 71–73.

    Article  CAS  PubMed  Google Scholar 

  63. Heider U, Kaiser M, Muller C, Jakob C, Zavrski I, Schulz CO et al. Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol 2006; 77: 233–238.

    Article  CAS  PubMed  Google Scholar 

  64. Terpos E, Heath DJ, Rahemtulla A, Zervas K, Chantry A, Anagnostopoulos A et al. Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 2006; 135: 688–692.

    Article  CAS  PubMed  Google Scholar 

  65. Terpos E, Kastritis E, Roussou M, Heath D, Christoulas D, Anagnostopoulos N et al. The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis. Leukemia 2008; 22: 2247–2256.

    Article  CAS  PubMed  Google Scholar 

  66. Ozaki S, Tanaka O, Fujii S, Shigekiyo Y, Miki H, Choraku M et al. Therapy with bortezomib plus dexamethasone induces osteoblast activation in responsive patients with multiple myeloma. Int J Hematol 2007; 86: 180–185.

    Article  CAS  PubMed  Google Scholar 

  67. Zangari M, Esseltine D, Cavallo F, Neuwirth R, Elice F, Burns MJ et al. Predictive value of alkaline phosphatase for response and time to progression in bortezomib-treated multiple myeloma patients. Am J Hematol 2007; 82: 831–833.

    Article  CAS  PubMed  Google Scholar 

  68. Rajkumar SV, Richardson PG, Hideshima T, Anderson KC . Proteasome inhibition as a novel therapeutic target in human cancer. J Clin Oncol 2005; 23: 630–639.

    Article  CAS  PubMed  Google Scholar 

  69. Chauhan D, Bianchi G, Anderson KC . Targeting the UPS as therapy in multiple myeloma. BMC Biochem 2008; 9 (Suppl 1): S1; available online and pending publication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mitsiades N, Mitsiades CS, Richardson PG, Poulaki V, Tai YT, Chauhan D et al. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 2003; 101: 2377–2380.

    Article  CAS  PubMed  Google Scholar 

  71. Mikhael JR, Belch AR, Prince HM, Lucio MN, Maiolino A, Corso A et al. High response rate to bortezomib with or without dexamethasone in patients with relapsed or refractory multiple myeloma: results of a global phase 3b expanded access program. Br J Haematol 2009; 144: 169–175.

    Article  CAS  PubMed  Google Scholar 

  72. Jagannath S, Richardson PG, Barlogie B, Berenson JR, Singhal S, Irwin D et al. Bortezomib in combination with dexamethasone for the treatment of patients with relapsed and/or refractory multiple myeloma with less than optimal response to bortezomib alone. Haematologica 2006; 91: 929–934.

    CAS  PubMed  Google Scholar 

  73. Bruno B, Patriarca F, Sorasio R, Mattei D, Montefusco V, Peccatori J et al. Bortezomib with or without dexamethasone in relapsed multiple myeloma following allogeneic hematopoietic cell transplantation. Haematologica 2006; 91: 837–839.

    CAS  PubMed  Google Scholar 

  74. Orlowski RZ, Small GW, Shi YY . Evidence that inhibition of p44/42 mitogen-activated protein kinase signaling is a factor in proteasome inhibitor-mediated apoptosis. J Biol Chem 2002; 277: 27864–27871.

    Article  CAS  PubMed  Google Scholar 

  75. Small GW, Somasundaram S, Moore DT, Shi YY, Orlowski RZ . Repression of mitogen-activated protein kinase (MAPK) phosphatase-1 by anthracyclines contributes to their antiapoptotic activation of p44/42-MAPK. J Pharmacol Exp Ther 2003; 307: 861–869.

    Article  CAS  PubMed  Google Scholar 

  76. Small GW, Shi YY, Edmund NA, Somasundaram S, Moore DT, Orlowski RZ . Evidence that mitogen-activated protein kinase phosphatase-1 induction by proteasome inhibitors plays an antiapoptotic role. Mol Pharmacol 2004; 66: 1478–1490.

    Article  CAS  PubMed  Google Scholar 

  77. Orlowski RZ, Voorhees PM, Garcia RA, Hall MD, Kudrik FJ, Allred T et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 2005; 105: 3058–3065.

    Article  CAS  PubMed  Google Scholar 

  78. Biehn SE, Moore DT, Voorhees PM, Garcia RA, Lehman MJ, Dees EC et al. Extended follow-up of outcome measures in multiple myeloma patients treated on a phase I study with bortezomib and pegylated liposomal doxorubicin. Ann Hematol 2007; 86: 211–216.

    Article  CAS  PubMed  Google Scholar 

  79. Orlowski RZ, Nagler A, Sonneveld P, Blade J, Hajek R, Spencer A et al. Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J Clin Oncol 2007; 25: 3892–3901.

    Article  CAS  PubMed  Google Scholar 

  80. Sonneveld P, Hajek R, Nagler A, Spencer A, Blade J, Robak T et al. Combined pegylated liposomal doxorubicin and bortezomib is highly effective in patients with recurrent or refractory multiple myeloma who received prior thalidomide/lenalidomide therapy. Cancer 2008; 112: 1529–1537.

    Article  CAS  PubMed  Google Scholar 

  81. Blade J, Sonneveld P, San Miguel JF, Sutherland HJ, Hajek R, Nagler A et al. Pegylated liposomal doxorubicin plus bortezomib in relapsed or refractory multiple myeloma: efficacy and safety in patients with renal function impairment. Clin Lymphoma Myeloma 2008; 8: 352–355.

    Article  CAS  PubMed  Google Scholar 

  82. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99: 14374–14379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Voorhees PM, Chen Q, Kuhn DJ, Small GW, Hunsucker SA, Strader JS et al. Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 2007; 13: 6469–6478.

    Article  CAS  PubMed  Google Scholar 

  84. Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 2006; 107: 4053–4062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shi YY, Small GW, Orlowski RZ . Proteasome inhibitors induce a p38 mitogen-activated protein kinase (MAPK)-dependent anti-apoptotic program involving MAPK phosphatase-1 and Akt in models of breast cancer. Breast Cancer Res Treat 2006; 100: 33–47.

    Article  CAS  PubMed  Google Scholar 

  86. Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci USA 2005; 102: 8567–8572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Andtbacka RH, Dunner Jr K et al. Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 2006; 66: 3773–3781.

    Article  CAS  PubMed  Google Scholar 

  88. Catley L, Weisberg E, Kiziltepe T, Tai YT, Hideshima T, Neri P et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 2006; 108: 3441–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ciolli S, Leoni F, Casini C, Breschi C, Santini V, Bosi A . The addition of liposomal doxorubicin to bortezomib, thalidomide and dexamethasone significantly improves clinical outcome of advanced multiple myeloma. Br J Haematol 2008; 141: 814–819.

    Article  CAS  PubMed  Google Scholar 

  90. Reece DE, Rodriguez GP, Chen C, Trudel S, Kukreti V, Mikhael J et al. Phase I-II trial of bortezomib plus oral cyclophosphamide and prednisone in relapsed and refractory multiple myeloma. J Clin Oncol 2008; 26: 4777–4783.

    Article  CAS  PubMed  Google Scholar 

  91. Richardson P, Wolf J, Jakubowiak A, Zonder J, Lonial S, Irwin DH et al. Phase I/II results of a multicenter trial of perifosine (KRX-0401) + bortezomib in patients with relapsed or relapsed/refractory multiple myeloma who were previously relapsed from or refractory to bortezomib. Blood 2008; 112: Abstract 870.

    Google Scholar 

  92. Richardson P, Chanan-Khan AA, Lonial S, Krishnan A, Alsina M, Carroll M et al. A multicenter phase 1 clinical trial of tanespimycin (KOS-953) + bortezomib (BZ): encouraging activity and manageable toxicity in heavily pre-treated patients with relapsed refractory multiple myeloma (MM). Blood 2006; 108: Abstract 406.

    Google Scholar 

  93. Richardson PG, Chanan-Khan A, Lonial S, Krishman A, Carroll M, Cropp GF et al. Tanespimycin (T) + bortezomib (BZ) in multiple myeloma (MM): confirmation of the recommended dose using a novel formulation. Blood 2007; 110: 353a, abstract 1165.

    Article  CAS  Google Scholar 

  94. Weber D, Badros AZ, Jagannath S, Siegel D, Richon V, Rizvi S et al. Vorinostat plus bortezomib for the treatment of relapsed/refractory multiple myeloma: early clinical experience. Blood 2008; 112: Abstract 871.

    Google Scholar 

  95. Richardson P, Jagannath S, Jakubowiak A, Lonial S, Raje N, Alsina M et al. Lenalidomide, bortezomib, and dexamethasone in patients with relapsed or relapsed/refractory multiple myeloma (MM): encouraging response rates and tolerability with correlation of outcome and adverse cytogenetics in a phase II study. Blood 2008; 112: Abstract 1742.

    Google Scholar 

  96. Jagannath S, Durie BG, Wolf J, Camacho E, Irwin D, Lutzky J et al. Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 2005; 129: 776–783.

    Article  CAS  PubMed  Google Scholar 

  97. Harousseau JL, Attal M, Leleu X, Troncy J, Pegourie B, Stoppa AM et al. Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of an IFM phase II study. Haematologica 2006; 91: 1498–1505.

    CAS  PubMed  Google Scholar 

  98. Oakervee HE, Popat R, Curry N, Smith P, Morris C, Drake M et al. PAD combination therapy (PS-341/bortezomib, doxorubicin and dexamethasone) for previously untreated patients with multiple myeloma. Br J Haematol 2005; 129: 755–762.

    Article  CAS  PubMed  Google Scholar 

  99. Popat R, Oakervee HE, Hallam S, Curry N, Odeh L, Foot N et al. Bortezomib, doxorubicin and dexamethasone (PAD) front-line treatment of multiple myeloma: updated results after long-term follow-up. Br J Haematol 2008; 141: 512–516.

    Article  CAS  PubMed  Google Scholar 

  100. Hari M, MacDonald J, Friedman J, Kendall T, Mulligan G, Jakubowiak A . Gene expression profiles (GEP) to predict at least very good partial response to Velcade, Doxil, and dexamethasone in newly diagnosed patients with multiple myeloma. Blood 2007; 110: Abstract 1489.

    Google Scholar 

  101. Jakubowiak A, Kendall T, Al-Zoubi A, Khaled Y, Mineishi S, Brozo C et al. Initial treatment with bortezomib (Velcade®), Doxil®, and dexamethasone (VDD) is superior to thalidomide and dexamethasone (TD) as initial therapy prior to autologous stem cell transplantation (ASCT) for multiple myeloma (MM). Blood 2008; 112: Abstract 3713.

    Article  CAS  Google Scholar 

  102. Wang M, Giralt S, Delasalle K, Handy B, Alexanian R . Bortezomib in combination with thalidomide–dexamethasone for previously untreated multiple myeloma. Hematology 2007; 12: 235–239.

    Article  CAS  PubMed  Google Scholar 

  103. Richardson P, Lonial S, Jakubowiak A, Jagannath S, Raje NS, Avigan D et al. Lenalidomide, bortezomib, and dexamethasone in patients with newly diagnosed multiple myeloma: encouraging efficacy in high risk groups with updated results of a phase I/II study. Blood 2008; 112: Abstract 92.

    Google Scholar 

  104. Reeder CB, Reece DE, Kukreti V, Chen C, Trudel S, Hentz J et al. Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma: high response rates in a phase II clinical trial. Leukemia 2009; 23: 1337–1341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kropff M, Liebisch P, Knop S, Weisel K, Wand H, Gann CN et al. DSMM XI study: dose definition for intravenous cyclophosphamide in combination with bortezomib/dexamethasone for remission induction in patients with newly diagnosed myeloma. Ann Hematol 2009, March 10, e-pub ahead of print.

  106. Badros A, Goloubeva O, Fenton R, Rapoport AP, Akpek G, Harris C et al. Phase I trial of first-line bortezomib/thalidomide plus chemotherapy for induction and stem cell mobilization in patients with multiple myeloma. Clin Lymphoma Myeloma 2006; 7: 210–216.

    Article  CAS  PubMed  Google Scholar 

  107. Barlogie B, Anaissie E, van Rhee F, Haessler J, Hollmig K, Pineda-Roman M et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol 2007; 138: 176–185.

    Article  CAS  PubMed  Google Scholar 

  108. Harousseau JL, Mathiot C, Attal M, Marit G, Caillot D, Mohty MMM et al. VELCADE/dexamethasone (Vel/D) versus VAD as induction treatment prior to autologous stem cell transplantation (ASCT) in newly diagnosed multiple myeloma (MM): updated results of the IFM 2005/01 trial. Blood 2007; 110: Abstract 450.

    Article  CAS  Google Scholar 

  109. Cavo M, Tacchetti P, Patriarca F, Petrucci MT, Pantani L, Ceccolini M et al. Superior complete response rate and progression-free survival after autologous transplantation with up-front Velcade–thalidomide–dexamethasone compared with thalidomide-dexamethasone in newly diagnosed multiple myeloma. Blood 2008; 112: Abstract 158.

    Google Scholar 

  110. Mateos MV, Hernandez JM, Hernandez MT, Gutierrez NC, Palomera L, Fuertes M et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study. Blood 2006; 108: 2165–2172.

    Article  CAS  PubMed  Google Scholar 

  111. Mateos MV, Hernandez JM, Hernandez MT, Gutierrez NC, Palomera L, Fuertes M et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: updated time-to-events results and prognostic factors for time to progression. Haematologica 2008; 93: 560–565.

    Article  CAS  PubMed  Google Scholar 

  112. Mateos M-V, Oriol A, Martínez J, Cibeira MT, de Paz R, Terol MJ et al. Bortezomib (Velcade)-melphalan-prednisone (VMP) versus Velcade–thalidomide–prednisone (VTP) in elderly untreated multiple myeloma patients: which is the best partner for Velcade: an alkylating or an immunomodulator agent? Blood 2008; 112: Abstract 651.

    Google Scholar 

  113. Palumbo A, Bringhen S, Rossi D, Magarotto V, Di Raimondo F, Ria R et al. A prospective, randomized, phase III study of bortezomib, melphalan, prednisone and thalidomide (VMPT) versus bortezomib, melphalan and prednisone (VMP) in elderly newly diagnosed myeloma patients. Blood 2008; 112: Abstract 652.

    Article  CAS  Google Scholar 

  114. San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff M et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 2008; 359: 906–917.

    Article  CAS  PubMed  Google Scholar 

  115. Benevolo G, Larocca A, Pregno P, Gay F, Botto B, Orsucci L et al. Bortezomib and dexamethasone as maintenance therapy in relapse/refractory multiple myeloma patients. Blood 2008; 112: Abstract 2771.

    Google Scholar 

  116. Dispenzieri A, Jacobus S, Vesole DH, Rajkumar SV, Greipp PR . Primary therapy with bortezomib—the role of induction, maintenance, and re-induction in patients with high risk myeloma. Update of results from E2A02. Blood 2008; 112: Abstract 1738.

    Article  Google Scholar 

  117. Hollmig K, Stover J, Talamo G, Zangari M, Thertulien R, van Rhee F et al. Addition of bortezomib (VelcadeTM) to high dose melphalan (Vel–Mel) as an effective conditioning regimen with autologous stem cell support in multiple myeloma (MM). Blood 2004; 104: Abstract 929.

    Google Scholar 

  118. Alekshun T, Mcisaac-Simonelli C, Kharfan-Dabaja M, Dalton W, Djulbegovic B, Fernandez H et al. Phase I study of bortezomib, (BTZ) followed by high-dose melphalan, (HD Mel) and BTZ as conditioning regimen for tandem peripheral blood stem cell transplants (TanPSCT) in patients with primary refractory multiple myeloma (MM) and plasma cell leukemia (PCL). Blood 2007; 110: Abstract 5131.

    Google Scholar 

  119. Scalzulli PR, Valvano MR, Bodenizza CC, Carella AM, Dell’Olio MM, Falcone AAP et al. Intermediate dose melphalan, bortezomib, thalidomide, dexametasone (MVTD) conditioning therapy and ASCT in relapsed multiple myeloma patients: a single center experience. Blood 2007; 110: Abstract 5117.

    Google Scholar 

  120. Roussel M, Huynh A, Moreau P, Harousseau JL, Hulin C, Caillot D et al. Bortezomib (BOR) and high dose melphalan (HDM) as conditioning regimen before autologous stem cell transplantation (ASCT) for de novo multiple myeloma (MM): final results of the IFM phase II study VEL/MEL. Blood 2008; 112: Abstract 160.

    Google Scholar 

  121. Lonial S, Kaufman J, Torre C, Langston A, Lechowicz MJ, Flowers C et al. A randomized phase I trial of melphalan+bortezomib as conditioning for autologous transplant for myeloma: the effect of sequence of administration. Blood 2008; 112: Abstract 3332.

    Google Scholar 

  122. Peles S, Fisher NM, Devine SM, Tomasson MH, DiPersio JF, Ravi Vij R . Bortezomib (Velcade) when given pretransplant and once weekly as consolidation therapy following high dose chemotherapy (HDCT) leads to high rates of reactivation of varicella zoster virus (VZV). Blood 2005; 106: Abstract 3237.

    Google Scholar 

  123. Uy GL, Goyal SD, Fisher NM, Oza AY, Tomasson MH, Stockerl-Goldstein K et al. Bortezomib administered pre-auto-SCT and as maintenance therapy post transplant for multiple myeloma: a single institution phase II study. Bone Marrow Transplant 2008; 43: 793–800.

    Article  CAS  PubMed  Google Scholar 

  124. Knop S, Hebart H, Kunzmann V, Angermund R, Einsele H . Bortezomib once weekly is well tolerated as maintenance therapy after less than a complete response to high-dose melphalan in patients with multiple myeloma. Blood 2006; 108: Abstract 5099.

    Google Scholar 

  125. Liao M, Malone R, Bartoni K, Habtemariam B, Paquette R, de Vos S et al. Updated results of a phase I/II trial of autologous peripheral blood progenitor cell transplantation with VelcadeTM maintenance as treatment for intermediate- and advanced-stage multiple myeloma. Blood 2008; 112: Abstract 3710.

    Google Scholar 

  126. Kroger N, Zabelina T, Ayuk F, Atanackovic D, Schieder H, Renges H et al. Bortezomib after dose-reduced allogeneic stem cell transplantation for multiple myeloma to enhance or maintain remission status. Exp Hematol 2006; 34: 770–775.

    Article  CAS  PubMed  Google Scholar 

  127. Yoon S-S, Kim HJ, Chung JS, Eom HS, Jang J-H, Kang HJ et al. Sequential VAD (vincristine, adriamycin, dexamethasone) and VTD (bortezomib, thalidomide, dexamethasone) induction followed by high-dose therapy with autologous stem cell transplantation and maintenance treatment with bortezomib for newly diagnosed multiple myeloma: final analysis of phase II trial. Blood 2008; 112: Abstract 3330.

    Article  CAS  Google Scholar 

  128. Ladetto M, Pagliano G, Ferrero S, Cavallo F, Drandi D, Boi M et al. Major shrinking of residual tumor cell burden and achievement of molecular remissions in myeloma patients undergoing post-trasplant consolidation with bortezomib, thalidomide and dexamethasone: a qualitative and quantitative PCR study. Blood 2008; 112: Abstract 3683.

    Google Scholar 

  129. Sun K, Welniak LA, Panoskaltsis-Mortari A, O'Shaughnessy MJ, Liu H, Barao I et al. Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci USA 2004; 101: 8120–8125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun K, Wilkins DE, Anver MR, Sayers TJ, Panoskaltsis-Mortari A, Blazar BR et al. Differential effects of proteasome inhibition by bortezomib on murine acute graft-versus-host disease (GVHD): delayed administration of bortezomib results in increased GVHD-dependent gastrointestinal toxicity. Blood 2005; 106: 3293–3299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. El-Cheikh J, Michallet M, Nagler A, de Lavallade H, Nicolini FE, Shimoni A et al. High response rate and improved graft-versus-host disease following bortezomib as salvage therapy after reduced intensity conditioning allogeneic stem cell transplantation for multiple myeloma. Haematologica 2008; 93: 455–458.

    Article  CAS  PubMed  Google Scholar 

  132. Mateos-Mazon J, Perez-Simon JA, Lopez O, Hernandez E, Etxebarria J, San Miguel JF . Use of bortezomib in the management of chronic graft-versus-host disease among multiple myeloma patients relapsing after allogeneic transplantation. Haematologica 2007; 92: 1295–1296.

    Article  CAS  PubMed  Google Scholar 

  133. Wolf J, Richardson PG, Schuster M, LeBlanc A, Walters IB, Battleman DS . Utility of bortezomib retreatment in relapsed or refractory multiple myeloma patients: a multicenter case series. Clin Adv Hematol Oncol 2008; 6: 755–760.

    PubMed  Google Scholar 

  134. Conner TM, Doan QD, Walters IB, LeBlanc AL, Beveridge RA . An observational, retrospective analysis of retreatment with bortezomib for multiple myeloma. Clin Lymphoma Myeloma 2008; 8: 140–145.

    Article  CAS  PubMed  Google Scholar 

  135. Rubio-Martinez A, Recasens V, Soria B, Montañes MA, Rubio-Escuin R, Giraldo P . Response to re-treatment on relapse multiple myeloma patients previously treated with bortezomib. Haematologica 2008; 93: Abstract 649.

    Article  Google Scholar 

  136. Fuchs D, Berges C, Opelz G, Daniel V, Naujokat C . Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. J Cell Biochem 2008; 103: 270–283.

    Article  CAS  PubMed  Google Scholar 

  137. Ruckrich T, Kraus M, Gogel J, Beck A, Ovaa H, Verdoes M et al. Characterization of the ubiquitin–proteasome system in bortezomib-adapted cells. Leukemia 2009; 23: 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  138. Lu S, Chen Z, Yang J, Chen L, Gong S, Zhou H et al. Overexpression of the PSMB5 gene contributes to bortezomib resistance in T-lymphoblastic lymphoma/leukemia cells derived from Jurkat line. Exp Hematol 2008; 36: 1278–1284.

    Article  CAS  PubMed  Google Scholar 

  139. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR et al. Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 2008; 112: 2489–2499.

    Article  CAS  PubMed  Google Scholar 

  140. Lu S, Yang J, Song X, Gong S, Zhou H, Guo L et al. Point mutation of the proteasome beta5 subunit gene is an important mechanism of bortezomib resistance in bortezomib-selected variants of Jurkat T cell lymphoblastic lymphoma/leukemia line. J Pharmacol Exp Ther 2008; 326: 423–431.

    Article  CAS  PubMed  Google Scholar 

  141. Chauhan D, Catley L, Li G, Podar K, Hideshima T, Velankar M et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell 2005; 8: 407–419.

    Article  CAS  PubMed  Google Scholar 

  142. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin–proteasome pathway, against preclinical models of multiple myeloma. Blood 2007; 110: 3281–3290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yang DT, Young KH, Kahl BS, Markovina S, Miyamoto S . Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Mol Cancer 2008; 7: 40; available online and pending publication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Markovina S, Callander NS, O'Connor SL, Kim J, Werndli JE, Raschko M et al. Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res 2008; 6: 1356–1364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hideshima T, Chauhan D, Richardson P, Mitsiades C, Mitsiades N, Hayashi T et al. NF-kappa B as a therapeutic target in multiple myeloma. J Biol Chem 2002; 277: 16639–16647.

    Article  CAS  PubMed  Google Scholar 

  146. Rumpold H, Salvador C, Wolf AM, Tilg H, Gastl G, Wolf D . Knockdown of PgP resensitizes leukemic cells to proteasome inhibitors. Biochem Biophys Res Commun 2007; 361: 549–554.

    Article  CAS  PubMed  Google Scholar 

  147. Chauhan D, Li G, Podar K, Hideshima T, Mitsiades C, Schlossman R et al. Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood 2004; 104: 2458–2466.

    Article  CAS  PubMed  Google Scholar 

  148. Adams J, Behnke M, Chen S, Cruickshank AA, Dick LR, Grenier L et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. Bioorg Med Chem Lett 1998; 8: 333–338.

    Article  CAS  PubMed  Google Scholar 

  149. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999; 59: 2615–2622.

    CAS  PubMed  Google Scholar 

  150. Springsteen G, Ballard CE, Gao S, Wang W, Wang B . The development of photometric sensors for boronic acids. Bioorg Chem 2001; 29: 259–270.

    Article  CAS  PubMed  Google Scholar 

  151. Zou W, Yue P, Lin N, He M, Zhou Z, Lonial S et al. Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clin Cancer Res 2006; 12: 273–280.

    Article  CAS  PubMed  Google Scholar 

  152. Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG et al. Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood 2009; 113: 5927–5937.

    Article  CAS  PubMed  Google Scholar 

  153. Llobet D, Eritja N, Encinas M, Sorolla A, Yeramian A, Schoenenberger JA et al. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells. Anticancer Drugs 2008; 19: 115–124.

    Article  CAS  PubMed  Google Scholar 

  154. Catley L, Anderson KC . Velcade and vitamin C: too much of a good thing? Clin Cancer Res 2006; 12: 3–4.

    Article  PubMed  Google Scholar 

  155. Shah JJ, Kuhn DJ, Orlowski RZ . Bortezomib and EGCG: no green tea for you? Blood 2009; 113: 5695–5696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Labutti J, Parsons I, Huang R, Miwa G, Gan LS, Daniels JS . Oxidative deboronation of the peptide boronic acid proteasome inhibitor bortezomib: contributions from reactive oxygen species in this novel cytochrome P450 reaction. Chem Res Toxicol 2006; 19: 539–546.

    Article  CAS  PubMed  Google Scholar 

  157. Pei XY, Dai Y, Grant S . The proteasome inhibitor bortezomib promotes mitochondrial injury and apoptosis induced by the small molecule Bcl-2 inhibitor HA14-1 in multiple myeloma cells. Leukemia 2003; 17: 2036–2045.

    Article  CAS  PubMed  Google Scholar 

  158. Chauhan D, Singh A, Brahmandam M, Podar K, Hideshima T, Richardson P et al. Combination of proteasome inhibitors bortezomib and NPI-0052 trigger in vivo synergistic cytotoxicity in multiple myeloma. Blood 2008; 111: 1654–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN et al. Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 2007; 67: 6383–6391.

    Article  CAS  PubMed  Google Scholar 

  160. Fenteany G, Schreiber SL . Lactacystin, proteasome function, and cell fate. J Biol Chem 1998; 273: 8545–8548.

    Article  CAS  PubMed  Google Scholar 

  161. Richardson P, Hofmeister CC, Zimmerman TM, Chanan-Khan AA, Spear MA, Palladino MA et al. Phase 1 clinical trial of NPI-0052, a novel proteasome inhibitor in patients with multiple myeloma. Blood 2008; 112: Abstract 2770.

    Article  CAS  Google Scholar 

  162. Sin N, Kim KB, Elofsson M, Meng L, Auth H, Kwok BH et al. Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. Bioorg Med Chem Lett 1999; 9: 2283–2288.

    Article  CAS  PubMed  Google Scholar 

  163. Arastu-Kapur S, Shenk K, Parlati F, Bennett MK . Non-proteasomal targets of proteasome inhibitors bortezomib and carfilzomib. Blood 2008; 112: Abstract 2657.

    Article  CAS  Google Scholar 

  164. Alsina M, Trudel S, Vallone M, Molineaux C, Kunkel L, Goy A . Phase 1 single agent antitumor activity of twice weekly consecutive day dosing of the proteasome inhibitor carfilzomib (PR-171) in hematologic malignancies. Blood 2007; 110: Abstract 411.

    Google Scholar 

  165. Orlowski RZ, Stewart K, Vallone M, Molineaux C, Kunkel L, Gericitano J et al. Safety and antitumor efficacy of the proteasome inhibitor carfilzomib (PR-171) dosed for five consecutive days in hematologic malignancies: phase 1 results. Blood 2007; 110: Abstract 409.

    Google Scholar 

  166. Jagannath S, Vij R, Stewart AK, Somlo G, Jakubowiak A, Reiman T et al. Initial results of PX-171-003, an open-label, single-arm, phase II study of carfilzomib (CFZ) in patients with relapsed and refractory multiple myeloma (MM). Blood 2008; 112: Abstract 864.

    Google Scholar 

  167. Vij R, Wang M, Orlowski R, Stewart AK, Jagannath S, Kukreti V et al. Initial results of PX-171-004, an open-label, single-arm, phase II study of carfilzomib (CFZ) in patients with relapsed myeloma (MM). Blood 2008; 112: Abstract 865.

    Google Scholar 

  168. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kastritis E, Zervas K, Symeonidis A, Terpos E, Delimbassi S, Anagnostopoulos N et al. Improved survival of patients with multiple myeloma after the introduction of novel agents and the applicability of the International Staging System (ISS): an analysis of the Greek Myeloma Study Group (GMSG). Leukemia 2009; 23: 1152–1157.

    Article  CAS  PubMed  Google Scholar 

  170. San Miguel JF, Schlag R, Khuageva NK, Dimopoulos MA, Shpilberg O, Kropff MH et al. Updated follow-up and results of subsequent therapy in the phase III VISTA trial: bortezomib plus melphalan–prednisone versus melphalan–prednisone in newly diagnosed multiple myeloma. Blood 2008; 112: Abstract 650.

    Google Scholar 

  171. Siegel DD, Sezer O, San Miguel JF, Mateos M-V, Prosser I, Cavo M et al. A phase IB, multicenter, open-label, dose-escalation study of oral panobinostat (LBH589) and i.v. bortezomib in patients with relapsed multiple myeloma. Blood 2008; 112: Abstract 2781.

    Google Scholar 

  172. Weber DM, Chen C, Niesvizky R, Wang M, Belch A, Stadtmauer EA et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 2007; 357: 2133–2142.

    Article  CAS  PubMed  Google Scholar 

  173. Dimopoulos M, Spencer A, Attal M, Prince HM, Harousseau JL, Dmoszynska A et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 2007; 357: 2123–2132.

    Article  CAS  PubMed  Google Scholar 

  174. Dimopoulos MA, Kastritis E, Rajkumar SV . Treatment of plasma cell dyscrasias with lenalidomide. Leukemia 2008; 22: 1343–1353.

    Article  CAS  PubMed  Google Scholar 

  175. Wang M, Dimopoulos MA, Chen C, Cibeira MT, Attal M, Spencer A et al. Lenalidomide plus dexamethasone is more effective than dexamethasone alone in patients with relapsed or refractory multiple myeloma regardless of prior thalidomide exposure. Blood 2008; 112: 4445–4451.

    Article  CAS  PubMed  Google Scholar 

  176. Piva R, Ruggeri B, Williams M, Costa G, Tamagno I, Ferrero D et al. CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 2008; 111: 2765–2775.

    Article  CAS  PubMed  Google Scholar 

  177. Dorsey BD, Iqbal M, Chatterjee S, Menta E, Bernardini R, Bernareggi A et al. Discovery of a potent, selective, and orally active proteasome inhibitor for the treatment of cancer. J Med Chem 2008; 51: 1068–1072.

    Article  CAS  PubMed  Google Scholar 

  178. Zhou HJ, Aujay MA, Bennett MK, Dajee M, Demo SD, Fang Y et al. Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J Med Chem 2009; 52: 3028–3038.

    Article  CAS  PubMed  Google Scholar 

  179. Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ . Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and non-specific proteasome inhibitors. Blood 2009; 113: 4667–4676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Noborio-Hatano K, Kikuchi J, Takatoku M, Shimizu R, Wada T, Ueda M et al. Bortezomib overcomes cell-adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene 2009; 28: 231–242.

    Article  CAS  PubMed  Google Scholar 

  181. Qin JZ, Ziffra J, Stennett L, Bodner B, Bonish BK, Chaturvedi V et al. Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res 2005; 65: 6282–6293.

    Article  CAS  PubMed  Google Scholar 

  182. Fennell DA, Chacko A, Mutti L . BCL-2 family regulation by the 20S proteasome inhibitor bortezomib. Oncogene 2008; 27: 1189–1197.

    Article  CAS  PubMed  Google Scholar 

  183. Gomez-Bougie P, Wuilleme-Toumi S, Menoret E, Trichet V, Robillard N, Philippe M et al. Noxa upregulation and Mcl-1 cleavage are associated to apoptosis induction by bortezomib in multiple myeloma. Cancer Res 2007; 67: 5418–5424.

    Article  CAS  PubMed  Google Scholar 

  184. Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT . Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 2005; 65: 3828–3836.

    Article  CAS  PubMed  Google Scholar 

  185. Podar K, Shringarpure R, Tai YT, Simoncini M, Sattler M, Ishitsuka K et al. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res 2004; 64: 7500–7506.

    Article  CAS  PubMed  Google Scholar 

  186. Shin DH, Chun YS, Lee DS, Huang LE, Park JW . Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1. Blood 2008; 111: 3131–3136.

    Article  CAS  PubMed  Google Scholar 

  187. Shi J, Tricot GJ, Garg TK, Malaviarachchi PA, Szmania SM, Kellum RE et al. Bortezomib downregulates the cell-surface expression of HLA class I and enhances natural killer cell-mediated lysis of myeloma. Blood 2008; 111: 1309–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV . Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 2007; 109: 4839–4845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chauhan D, Uchiyama H, Akbarali Y, Urashima M, Yamamoto K, Libermann TA et al. Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa B. Blood 1996; 87: 1104–1112.

    CAS  PubMed  Google Scholar 

  190. Hideshima T, Chauhan D, Hayashi T, Akiyama M, Mitsiades N, Mitsiades C et al. Proteasome inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene 2003; 22: 8386–8393.

    Article  CAS  PubMed  Google Scholar 

  191. Podar K, Gouill SL, Zhang J, Opferman JT, Zorn E, Tai YT et al. A pivotal role for Mcl-1 in bortezomib-induced apoptosis. Oncogene 2008; 27: 721–731.

    Article  CAS  PubMed  Google Scholar 

  192. Ma MH, Yang HH, Parker K, Manyak S, Friedman JM, Altamirano C et al. The proteasome inhibitor PS-341 markedly enhances sensitivity of multiple myeloma tumor cells to chemotherapeutic agents. Clin Cancer Res 2003; 9: 1136–1144.

    CAS  PubMed  Google Scholar 

  193. Hideshima T, Mitsiades C, Akiyama M, Hayashi T, Chauhan D, Richardson P et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 2003; 101: 1530–1534.

    Article  CAS  PubMed  Google Scholar 

  194. Obeng EA, Carlson LM, Gutman DM, Harrington Jr WJ, Lee KP, Boise LH . Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood 2006; 107: 4907–4916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dong H, Chen L, Chen X, Gu H, Gao G, Gao Y et al. Dysregulation of unfolded protein response partially underlies proapoptotic activity of bortezomib in multiple myeloma cells. Leuk Lymphoma 2009; 50: 974–984.

    Article  CAS  PubMed  Google Scholar 

  196. Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H et al. Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 2006; 66: 184–191.

    Article  CAS  PubMed  Google Scholar 

  197. Ling YH, Liebes L, Ng B, Buckley M, Elliott PJ, Adams J et al. PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2–M phase arrest and apoptosis. Mol Cancer Ther 2002; 1: 841–849.

    CAS  PubMed  Google Scholar 

  198. Loo TW, Clarke DM . Superfolding of the partially unfolded core-glycosylated intermediate of human P-glycoprotein into the mature enzyme is promoted by substrate-induced transmembrane domain interactions. J Biol Chem 1998; 273: 14671–14674.

    Article  CAS  PubMed  Google Scholar 

  199. Loo TW, Clarke DM . The human multidrug resistance P-glycoprotein is inactive when its maturation is inhibited: potential for a role in cancer chemotherapy. FASEB J 1999; 13: 1724–1732.

    Article  CAS  PubMed  Google Scholar 

  200. Takigawa N, Vaziri SA, Grabowski DR, Chikamori K, Rybicki LR, Bukowski RM et al. Proteasome inhibition with bortezomib enhances activity of topoisomerase I-targeting drugs by NF-kappaB-independent mechanisms. Anticancer Res 2006; 26 (3A): 1869–1876.

    CAS  PubMed  Google Scholar 

  201. Catley L, Tai YT, Shringarpure R, Burger R, Son MT, Podar K et al. Proteasomal degradation of topoisomerase I is preceded by c-Jun NH2-terminal kinase activation, Fas upregulation, and poly(ADP-ribose) polymerase cleavage in SN38-mediated cytotoxicity against multiple myeloma. Cancer Res 2004; 64: 8746–8753.

    Article  CAS  PubMed  Google Scholar 

  202. Congdon LM, Pourpak A, Escalante AM, Dorr RT, Landowski TH . Proteasomal inhibition stabilizes topoisomerase II alpha protein and reverses resistance to the topoisomerase II poison ethonafide (AMP-53, 6-ethoxyazonafide). Biochem Pharmacol 2008; 75: 883–890.

    Article  CAS  PubMed  Google Scholar 

  203. Berenson JR, Yang HH, Sadler K, Jarutirasarn SG, Vescio RA, Mapes R et al. Phase I/II trial assessing bortezomib and melphalan combination therapy for the treatment of patients with relapsed or refractory multiple myeloma. J Clin Oncol 2006; 24: 937–944.

    Article  CAS  PubMed  Google Scholar 

  204. Berenson JR, Yang HH, Vescio RA, Nassir Y, Mapes R, Lee SP et al. Safety and efficacy of bortezomib and melphalan combination in patients with relapsed or refractory multiple myeloma: updated results of a phase 1/2 study after longer follow-up. Ann Hematol 2008; 87: 623–631.

    Article  CAS  PubMed  Google Scholar 

  205. Berenson JR, Yellin O, Patel R, Duvivier H, Nassir Y, Mapes R et al. A phase I study of samarium lexidronam/bortezomib combination therapy for the treatment of relapsed or refractory multiple myeloma. Clin Cancer Res 2009; 15: 1069–1075.

    Article  CAS  PubMed  Google Scholar 

  206. Rossi J-F, Manges RF, Sutherland HJ, Jagannath S, Voorhees P, Sonneveld P et al. Preliminary results of CNTO 328, an anti-interleukin-6 monoclonal antibody, in combination with bortezomib in the treatment of relapsed or refractory multiple myeloma. Blood 2008; 112: Abstract 867.

    Google Scholar 

  207. Ciolli S, Leoni F, Gigli F, Rigacci L, Bosi A . Low dose Velcade, thalidomide and dexamethasone (LD-VTD): an effective regimen for relapsed and refractory multiple myeloma patients. Leuk Lymphoma 2006; 47: 171–173.

    Article  CAS  PubMed  Google Scholar 

  208. Pineda-Roman M, Zangari M, van Rhee F, Anaissie E, Szymonifka J, Hoering A et al. VTD combination therapy with bortezomib–thalidomide–dexamethasone is highly effective in advanced and refractory multiple myeloma. Leukemia 2008; 22: 1419–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Berenson JR, Matous J, Swift RA, Mapes R, Morrison B, Yeh HS . A phase I/II study of arsenic trioxide/bortezomib/ascorbic acid combination therapy for the treatment of relapsed or refractory multiple myeloma. Clin Cancer Res 2007; 13: 1762–1768.

    Article  CAS  PubMed  Google Scholar 

  210. Kropff M, Bisping G, Schuck E, Liebisch P, Lang N, Hentrich M et al. Bortezomib in combination with intermediate-dose dexamethasone and continuous low-dose oral cyclophosphamide for relapsed multiple myeloma. Br J Haematol 2007; 138: 330–337.

    Article  CAS  PubMed  Google Scholar 

  211. Palumbo A, Gay F, Bringhen S, Falcone A, Pescosta N, Callea V et al. Bortezomib, doxorubicin and dexamethasone in advanced multiple myeloma. Ann Oncol 2008; 19: 1160–1165.

    Article  CAS  PubMed  Google Scholar 

  212. Palumbo A, Ambrosini MT, Benevolo G, Pregno P, Pescosta N, Callea V et al. Bortezomib, melphalan, prednisone, and thalidomide for relapsed multiple myeloma. Blood 2007; 109: 2767–2772.

    CAS  PubMed  Google Scholar 

  213. Palumbo A, Avonto I, Bruno B, Falcone A, Scalzulli PR, Ambrosini MT et al. Intermediate-dose melphalan (100 mg/m2)/bortezomib/thalidomide/dexamethasone and stem cell support in patients with refractory or relapsed myeloma. Clin Lymphoma Myeloma 2006; 6: 475–477.

    Article  CAS  PubMed  Google Scholar 

  214. Bensinger W, Jagannath S, Vescio R, Camacho ES, Wolf JL, Irwin DH et al. A phase II study of bortezomib (Velcade®), cyclophosphamide (Cytoxan®), thalidomide (Thalomid®) and dexamethasone as first-line therapy for multiple myeloma. Blood 2008; 112: Abstract 94.

    Google Scholar 

  215. Kumar S, Flinn IW, Noga SJ, Hari P, Rifkin RM, Callander NS et al. Safety and efficacy of novel combination therapy with bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in newly diagnosed multiple myeloma: initial results from the phase I/II multi-center EVOLUTION study. Blood 2008; 112: Abstract 93.

    Article  Google Scholar 

  216. Rosinol L, Oriol A, Mateos MV, Sureda A, Garcia-Sanchez P, Gutierrez N et al. Phase II PETHEMA trial of alternating bortezomib and dexamethasone as induction regimen before autologous stem-cell transplantation in younger patients with multiple myeloma: efficacy and clinical implications of tumor response kinetics. J Clin Oncol 2007; 25: 4452–4458.

    Article  CAS  PubMed  Google Scholar 

  217. Sonneveld P, van der Holt B, Schmidt-Wolf IGH, Bertsch U, el Jarari L, Salwender H-J et al. First analysis of HOVON-65/GMMG-HD4 randomized phase III trial comparing bortezomib, adriamycine, dexamethasone (PAD) vs VAD as induction treatment prior to high dose melphalan (HDM) in patients with newly diagnosed multiple pyeloma (MM). Blood 2008; 112: Abstract 653.

    Google Scholar 

  218. Rosinol L, Cibeira MT, Martinez J, Mateos MV, Terol MJ, de la Rubia J et al. Thalidomide/dexamethasone (TD) vs bortezomib(Velcade®)/thalidomide/dexamethasone (VTD) vs VBMCP/VBAD/Velcade® as induction regimens prior autologous stem cell transplantation (ASCT) in younger patients with multiple myeloma (MM): first results of a prospective phase III PETHEMA/Gem trial. Blood 2008; 112: Abstract 654.

    Article  CAS  Google Scholar 

  219. Berenson JR, Yellin O, Woytowitz D, Flam MS, Cartmell A, Patel R et al. Bortezomib, ascorbic acid and melphalan (BAM) therapy for patients with newly diagnosed multiple myeloma: an effective and well-tolerated frontline regimen. Eur J Haematol 2009; 82: 433–439.

    Article  CAS  PubMed  Google Scholar 

  220. Bilalis AG, Papadimitriou K, Pouli A, Papanastasiou K, Tsakanikas S, Stefanitsi P et al. Bortezomib in multiple myeloma: treatment and retreatment. A single center experience. Blood 2007; 110: Abstract 4819.

    Google Scholar 

  221. Petrucci MT, Gallucci C, Federico V, Del Bianco P, Foa R . Velcade as retreatment of multiple myeloma patients previously responsive to Velcade. Blood 2006; 108: Abstract 5088.

    Google Scholar 

  222. Druck M, Walters IB, Carloss H, Sood R, Leblanc AL, Noga SJ . A phase IV, open-label trial using bortezomib for retreatment of patients (pts) with multiple myeloma (MM) following an initial response to bortezomib. J Clin Oncol 2006; 24: Abstract 17539.

    Google Scholar 

  223. Hrusovsky I, Emmerich B, von Rohr A, Engelhardt M, Voegeli J, Taverna C et al. Bortezomib retreatment in relapsed multiple myeloma (MM): results from a binational, multicenter retrospective survey. Blood 2008; 112: Abstract 2775.

    Google Scholar 

  224. Petrucci MT, Blau IW, Corradini P, Dimopoulos MA, Drach J, Giraldo P et al. Efficacy and safety of re-treatment with bortezomib (Velcade©) in patients with multiple myeloma: results from a prospective international phase II trial. Blood 2008; 112: Abstract 3690.

    Google Scholar 

Download references

Acknowledgements

RZO, a Leukemia & Lymphoma Society Foundation Scholar in Clinical Research, would also like to acknowledge support from the Leukemia & Lymphoma Society (6096-07) and the National Cancer Institute (RO1 CA102278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Z Orlowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, J., Orlowski, R. Proteasome inhibitors in the treatment of multiple myeloma. Leukemia 23, 1964–1979 (2009). https://doi.org/10.1038/leu.2009.173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.173

Keywords

This article is cited by

Search

Quick links