Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

A novel translocation, t(14;19)(q32;p13), involving IGH@ and the cytokine receptor for erythropoietin

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Willis TG, Dyer MJ . The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 2000; 96: 808–822.

    CAS  PubMed  Google Scholar 

  2. Akasaka T, Balasas T, Russell LJ, Sugimoto KJ, Majid A, Walewska R et al. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 2007; 109: 3451–3461.

    Article  CAS  Google Scholar 

  3. Russell LJ, Akasaka T, Majid A, Sugimoto KJ, Loraine KE, Nagel I et al. t(6;14)(p22;q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 2008; 111: 387–391.

    Article  CAS  Google Scholar 

  4. Chapiro E, Russell L, Radford-Weiss I, Bastard C, Lessard M, Struski S, et al., the Groupe Francophone de Cytogenetique H. Overexpression of CEBPA resulting from the translocation t(14;19)(q32;q13) of human precursor B acute lymphoblastic leukemia. Blood 2006; 108: 3560–3563.

    Article  CAS  Google Scholar 

  5. Harrison CJ, Martineau M, Secker-Walker LM . The Leukaemia Research Fund/United Kingdom Cancer Cytogenetics Group Karyotype Database in acute lymphoblastic leukaemia: a valuable resource for patient management. Br J Haematol 2001; 113: 3–10.

    Article  CAS  Google Scholar 

  6. Hardee ME, Arcasoy MO, Blackwell KL, Kirkpatrick JP, Dewhirst MW . Erythropoietin biology in cancer. Clin Cancer Res 2006; 12: 332–339.

    Article  CAS  Google Scholar 

  7. Malinge S, Ben-Abdelali R, Settegrana C, Radford-Weiss I, Debre M, Beldjord K et al. Novel activating JAK2 mutation in a patient with Down syndrome and B-cell precursor acute lymphoblastic leukemia. Blood 2007; 109: 2202–2204.

    Article  CAS  Google Scholar 

  8. Lu X, Levine R, Tong W, Wernig G, Pikman Y, Zarnegar S et al. Expression of a homodimeric type I cytokine receptor is required for JAK2V617F-mediated transformation. Proc Natl Acad Sci 2005; 102: 18962–18967.

    Article  CAS  Google Scholar 

  9. Funakoshi-Tago M, Pelletier S, Moritake H, Parganas E, Ihle JN . Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity. Mol Cell Biol 2008; 28: 1792–1801.

    Article  CAS  Google Scholar 

  10. Wernig G, Gonneville JR, Crowley BJ, Rodrigues MS, Reddy MM, Hudon HE et al. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes. Blood 2008; 111: 3751–3759.

    Article  CAS  Google Scholar 

  11. Ganmore I, Bercovich D, Scott LM, Green AR, Cazzaniga G, Biondi A et al. Collaboration between activating mutations in JAK2 and trisomy 21 in the acute lymphoblastic leukemias of down syndrome (DS). Blood 2007; 110: LB6.

    Article  Google Scholar 

  12. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF . Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 1999; 98: 181–191.

    Article  CAS  Google Scholar 

  13. Ward AC, Touw I, Yoshimura A . The Jak–Stat pathway in normal and perturbed hematopoiesis. Blood 2000; 95: 19–29.

    CAS  PubMed  Google Scholar 

  14. Fine BM, Stanulla M, Schrappe M, Ho M, Viehmann S, Harbott J et al. Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. Blood 2004; 103: 1043–1049.

    Article  CAS  Google Scholar 

  15. Inthal A, G K, Beck D, Joas R, Kauer MO, Orel GFL, Mann G et al. Role of the erythropoietin receptor in ETV6/RUNX1-positive acute lymphoblastic leukemia. Clin Cancer Res 2008 (in press).

Download references

Acknowledgements

We thank all members of the UK Cancer Cytogenetics Group for providing cytogenetic data and the Clinical Trial Service Unit (CTSU, University of Oxford, UK) for providing trial data. This study could not have been performed without the dedication of the United Kingdom Children's Cancer and Leukaemia Group, Leukaemia and Lymphoma Division and Adult Leukemia Working Party, and their members who designed and coordinated the clinical trials through which these patients were identified and on which they were treated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C J Harrison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, L., De Castro, D., Griffiths, M. et al. A novel translocation, t(14;19)(q32;p13), involving IGH@ and the cytokine receptor for erythropoietin. Leukemia 23, 614–617 (2009). https://doi.org/10.1038/leu.2008.250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.250

This article is cited by

Search

Quick links