Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Deficiency of the G protein Gαq ameliorates experimental autoimmune encephalomyelitis with impaired DC-derived IL-6 production and Th17 differentiation

Abstract

Many G protein-coupled receptors (GPCRs) are reported to be involved in the pathogenesis of multiple sclerosis (MS), and ~40% of all identified GPCRs rely on the Gαq/11 G protein family to stimulate inositol lipid signaling. However, the function of Gα subunits in MS pathogenesis is still unknown. In this study, we attempted to determine the role of Gαq in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a well-known mouse model of MS. We discovered that compared with wild-type mice, Gαq-knockout mice exhibited less severe EAE symptoms, with lower clinical scores, reduced leukocyte infiltration and less extensive demyelination. Moreover, a significantly lower percentage of Th17 cells, one of the key players in MS pathogenesis, was observed in Gαq-knockout EAE mice. Studies in vitro demonstrated that deficiency of Gαq in CD4+ T cells directly impaired Th17 differentiation. In addition, deficiency of Gαq significantly impaired DC-derived IL-6 production, thus inhibiting Th17 differentiation and the Gαq-PLCβ-PKC and Gαq-MAPKs signaling pathways involved in the reduced IL-6 production by DCs. In summary, our data highlighted the critical role of Gαq in regulating Th17 differentiation and MS pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ascherio A, Munger KL . Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol 2007; 61: 288–299.

    Article  Google Scholar 

  2. Ascherio A, Munger KL . Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann Neurol 2007; 61: 504–513.

    Article  CAS  Google Scholar 

  3. Axtell RC, de Jong BA, Boniface K, van der Voort LF, Bhat R, De Sarno P et al. T helper type 1 and 17 cells determine efficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis. Nat Med 2010; 16: 406–412.

    Article  CAS  Google Scholar 

  4. Sospedra M, Martin R . Immunology of multiple sclerosis. Annu Rev Immunol 2005; 23: 683–747.

    Article  CAS  Google Scholar 

  5. Hepler JR, Gilman AG . G proteins. Trends Biochem Sci 1992; 17: 383–387.

    Article  CAS  Google Scholar 

  6. Standfuss J, Edwards PC, D'Antona A, Fransen M, Xie G, Oprian DD et al. The structural basis of agonist-induced activation in constitutively active rhodopsin. Nature 2011; 471: 656–660.

    Article  CAS  Google Scholar 

  7. Simon MI, Strathmann MP, Gautam N . Diversity of G proteins in signal transduction. Science 1991; 252: 802–808.

    Article  CAS  Google Scholar 

  8. Oka Y, Saraiva LR, Kwan YY, Korsching SI . The fifth class of Galpha proteins. Proc Natl Acad Sci USA 2009; 106: 1484–1489.

    Article  CAS  Google Scholar 

  9. Hubbard KB, Hepler JR . Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins. Cell Signal 2006; 18: 135–150.

    Article  CAS  Google Scholar 

  10. Zhang L, Shi G . Gq-coupled receptors in autoimmunity. J Immunol Res 2016; 2016: 3969023.

    PubMed  PubMed Central  Google Scholar 

  11. Du CS, Xie X . G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res 2012; 22: 1108–1128.

    Article  CAS  Google Scholar 

  12. Zoukos Y, Leonard JP, Thomaides T, Thompson AJ, Cuzner ML . beta-Adrenergic receptor density and function of peripheral blood mononuclear cells are increased in multiple sclerosis: a regulatory role for cortisol and interleukin-1. Ann Neurol 1992; 31: 657–662.

    Article  CAS  Google Scholar 

  13. Lynch JL, Alley JF, Wellman L, Beitz AJ . Decreased spinal cord opioid receptor mRNA expression and antinociception in a Theiler's murine encephalomyelitis virus model of multiple sclerosis. Brain Res 2008; 1191: 180–191.

    Article  CAS  Google Scholar 

  14. Wei W, Du C, Lv J, Zhao G, Li Z, Wu Z et al. Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol 2013; 190: 138–146.

    Article  CAS  Google Scholar 

  15. Muller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT et al. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J Immunol 2007; 179: 2774–2786.

    Article  Google Scholar 

  16. Wang D, Zhang Y, He Y, Li Y, Lund FE, Shi G . The deficiency of Galphaq leads to enhanced T-cell survival. Immunol Cell Biol 2014; 92: 781–790.

    Article  CAS  Google Scholar 

  17. Mei F, Guo S, He Y, Wang L, Wang H, Niu J et al. Quetiapine, an atypical antipsychotic, is protective against autoimmune-mediated demyelination by inhibiting effector T cell proliferation. PLOS ONE 2012; 7: e42746.

    Article  CAS  Google Scholar 

  18. Haines JD, Herbin O, de la Hera B, Vidaurre OG, Moy GA, Sun Q et al. Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination. Nat Neurosci 2015; 18: 511–520.

    Article  CAS  Google Scholar 

  19. Svensson L, Stanley P, Willenbrock F, Hogg N . The Galphaq/11 proteins contribute to T lymphocyte migration by promoting turnover of integrin LFA-1 through recycling. PLOS ONE 2012; 7: e38517.

    Article  CAS  Google Scholar 

  20. Wang L, Du C, Lv J, Wei W, Cui Y, Xie X . Antiasthmatic drugs targeting the cysteinyl leukotriene receptor 1 alleviate central nervous system inflammatory cell infiltration and pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 2011; 187: 2336–2345.

    Article  CAS  Google Scholar 

  21. Comabella M, Montalban X, Munz C, Lunemann JD . Targeting dendritic cells to treat multiple sclerosis. Nat Rev Neurol 2010; 6: 499–507.

    Article  CAS  Google Scholar 

  22. Kapsenberg ML . Dendritic-cell control of pathogen-driven T-cell polarization. Nature Reviews Immunology 2003; 3: 984–993.

    Article  CAS  Google Scholar 

  23. Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8: 967–974.

    Article  CAS  Google Scholar 

  24. Wang Y, Falting JM, Mattsson CL, Holmstrom TE, Nedergaard J . In brown adipocytes, adrenergically induced beta(1)-/beta(3)-(Gs)-, alpha(2)-(Gi)- and alpha(1)-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation. Exp Cell Res 2013; 319: 2718–2727.

    Article  CAS  Google Scholar 

  25. Chan AS, Wong YH . Gbetagamma signaling and Ca2+ mobilization co-operate synergistically in a Sos and Rac-dependent manner in the activation of JNK by Gq-coupled receptors. Cell Signal 2004; 16: 823–836.

    Article  CAS  Google Scholar 

  26. Sugawara Y, Nishii H, Takahashi T, Yamauchi J, Mizuno N, Tago K et al. The lipid raft proteins flotillins/reggies interact with Galphaq and are involved in Gq-mediated p38 mitogen-activated protein kinase activation through tyrosine kinase. Cell Signal 2007; 19: 1301–1308.

    Article  CAS  Google Scholar 

  27. Goldsmith ZG, Dhanasekaran DN . G protein regulation of MAPK networks. Oncogene 2007; 26: 3122–3142.

    Article  CAS  Google Scholar 

  28. Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KH . T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol 2010; 162: 1–11.

    Article  CAS  Google Scholar 

  29. Goldenberg MM . Multiple sclerosis review. P T 2012; 37: 175–184.

    PubMed  PubMed Central  Google Scholar 

  30. Chun J, Brinkmann V . A mechanistically novel, first oral therapy for multiple sclerosis: the development of fingolimod (FTY720, Gilenya). Discov Med 2011; 12: 213–228.

    PubMed  PubMed Central  Google Scholar 

  31. Jacobson JD, Ansari MA, Kinealy M, Muthukrishnan V . Gender-specific exacerbation of murine lupus by gonadotropin-releasing hormone: potential role of G alpha(q/11). Endocrinology 1999; 140: 3429–3437.

    Article  CAS  Google Scholar 

  32. Ansari MA, Dhar M, Muthukrishnan V, Morton TL, Bakht N, Jacobson JD . Administration of antisense oligonucleotides to Galpha(Q/11) reduces the severity of murine lupus. Biochimie 2003; 85: 627–632.

    Article  CAS  Google Scholar 

  33. Aminzadeh MA, Tseliou E, Sun B, Cheng K, Malliaras K, Makkar RR et al. Therapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy. Eur Heart J 2015; 36: 751–762.

    Article  CAS  Google Scholar 

  34. Xia SH, Hu CX, Fang JM, Di Y, Zhao ZL, Liu LR . G[alpha]i2 and G[alpha]q expression change in pancreatic tissues and BN52021 effects in rats with severe acute pancreatitis. Pancreas 2008; 37: 170–175.

    Article  CAS  Google Scholar 

  35. Peres CM, Aronoff DM, Serezani CH, Flamand N, Faccioli LH, Peters-Golden M . Specific leukotriene receptors couple to distinct G proteins to effect stimulation of alveolar macrophage host defense functions. J Immunol 2007; 179: 5454–5461.

    Article  CAS  Google Scholar 

  36. Foster HR, Fuerst E, Branchett W, Lee TH, Cousins DJ, Woszczek G . Leukotriene E4 is a full functional agonist for human cysteinyl leukotriene type 1 receptor-dependent gene expression. Sci Rep 2016; 6: 20461.

    Article  CAS  Google Scholar 

  37. Kihara Y, Matsushita T, Kita Y, Uematsu S, Akira S, Kira J et al. Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis. Proc Natl Acad Sci USA 2009; 106: 21807–21812.

    Article  CAS  Google Scholar 

  38. Andreasson K . Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 2010; 91: 104–112.

    Article  CAS  Google Scholar 

  39. Bilak M, Wu L, Wang Q, Haughey N, Conant K St, Hillaire C et al. PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis. Ann Neurol 2004; 56: 240–248.

    Article  CAS  Google Scholar 

  40. Ma RZ, Gao J, Meeker ND, Fillmore PD, Tung KS, Watanabe T et al. Identification of Bphs, an autoimmune disease locus, as histamine receptor H1. Science 2002; 297: 620–623.

    Article  CAS  Google Scholar 

  41. Zappia CD, Granja-Galeano G, Fernandez N, Shayo C, Davio C, Fitzsimons CP et al. Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways. Sci Rep 2015; 5: 17476.

    Article  CAS  Google Scholar 

  42. Pedotti R, DeVoss JJ, Youssef S, Mitchell D, Wedemeyer J, Madanat R et al. Multiple elements of the allergic arm of the immune response modulate autoimmune demyelination. Proc Natl Acad Sci USA 2003; 100: 1867–1872.

    Article  CAS  Google Scholar 

  43. Deo DD, Bazan NG, Hunt JD . Activation of platelet-activating factor receptor-coupled G alpha q leads to stimulation of Src and focal adhesion kinase via two separate pathways in human umbilical vein endothelial cells. J Biol Chem 2004; 279: 3497–3508.

    Article  CAS  Google Scholar 

  44. Drolet AM, Thivierge M, Turcotte S, Hanna D, Maynard B, Stankova J et al. Platelet-activating factor induces Th17 cell differentiation. Mediators Inflamm 2011; 2011: 913802.

    Article  Google Scholar 

  45. Ngai J, Methi T, Andressen KW, Levy FO, Torgersen KM, Vang T et al. The heterotrimeric G-protein alpha-subunit Galphaq regulates TCR-mediated immune responses through an Lck-dependent pathway. Eur J Immunol 2008; 38: 3208–3218.

    Article  CAS  Google Scholar 

  46. Brisslert M, Bian L, Svensson MN, Santos RF, Jonsson IM, Barsukov I et al. S100A4 regulates the Src-tyrosine kinase dependent differentiation of Th17 cells in rheumatoid arthritis. Biochim Biophys Acta 2014; 1842: 2049–2059.

    Article  CAS  Google Scholar 

  47. Kemp KL, Levin SD, Stein PL . Lck regulates IL-10 expression in memory-like Th1 cells. Eur J Immunol 2010; 40: 3210–3219.

    Article  CAS  Google Scholar 

  48. Yang JQ, Kalim KW, Li Y, Zhang S, Hinge A, Filippi MD et al. RhoA orchestrates glycolysis for TH2 cell differentiation and allergic airway inflammation. J Allergy Clin Immunol 2016; 137: e234.

    Google Scholar 

  49. Biswas PS, Gupta S, Chang E, Song L, Stirzaker RA, Liao JK et al. Phosphorylation of IRF4 by ROCK2 regulates IL-17 and IL-21 production and the development of autoimmunity in mice. J Clin Invest 2010; 120: 3280–3295.

    Article  CAS  Google Scholar 

  50. El Azreq MA, Kadiri M, Boisvert M, Page N, Tessier PA, Aoudjit F . Discoidin domain receptor 1 promotes Th17 cell migration by activating the RhoA/ROCK/MAPK/ERK signaling pathway. Oncotarget 2016; 7: 44975–44990.

    Article  Google Scholar 

  51. Blanco P, Palucka AK, Pascual V, Banchereau J . Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 2008; 19: 41–52.

    Article  CAS  Google Scholar 

  52. Nakano K, Higashi T, Hashimoto K, Takagi R, Tanaka Y, Matsushita S . Antagonizing dopamine D1-like receptor inhibits Th17 cell differentiation: preventive and therapeutic effects on experimental autoimmune encephalomyelitis. Biochem Biophys Res Commun 2008; 373: 286–291.

    Article  CAS  Google Scholar 

  53. Jin LQ, Wang HY, Friedman E . Stimulated D(1) dopamine receptors couple to multiple Galpha proteins in different brain regions. J Neurochem 2001; 78: 981–990.

    Article  CAS  Google Scholar 

  54. Nakano K, Yamaoka K, Hanami K, Saito K, Sasaguri Y, Yanagihara N et al. Dopamine induces IL-6-dependent IL-17 production via D1-like receptor on CD4 naive T cells and D1-like receptor antagonist SCH-23390 inhibits cartilage destruction in a human rheumatoid arthritis/SCID mouse chimera model. J Immunol 2011; 186: 3745–3752.

    Article  CAS  Google Scholar 

  55. Lee CH, Shieh DC, Tzeng CY, Chen CP, Wang SP, Chiu YC et al. Bradykinin-induced IL-6 expression through bradykinin B2 receptor, phospholipase C, protein kinase Cdelta and NF-kappaB pathway in human synovial fibroblasts. Mol Immunol 2008; 45: 3693–3702.

    Article  CAS  Google Scholar 

  56. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F . Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 2003; 374: 1–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ministry of Science and Technology of China (2014CB541903, 2012CB910404), the National Natural Science Foundation of China (31171348, 31371414), the Shanghai Municipal Education Commission (14zz042), the State Key Laboratory of Drug Research (SIMM1302KF-09) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changsheng Du.

Additional information

Supplementary Information accompanies this paper on Cellular & Molecular Immunology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, W., Cai, Y., Zhou, J. et al. Deficiency of the G protein Gαq ameliorates experimental autoimmune encephalomyelitis with impaired DC-derived IL-6 production and Th17 differentiation. Cell Mol Immunol 14, 557–567 (2017). https://doi.org/10.1038/cmi.2016.65

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2016.65

Keywords

This article is cited by

Search

Quick links