Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Neutrophil transcriptional profile changes during transit from bone marrow to sites of inflammation

Abstract

It has recently been established that neutrophils, the most abundant leukocytes, are capable of changes in gene expression during inflammatory responses. However, changes in the transcriptome as the neutrophil leaves the bone marrow have yet to be described. We hypothesized that neutrophils are transcriptionally active cells that alter their gene expression profiles as they migrate into the vasculature and then into inflamed tissues. Our goal was to provide an overview of how the neutrophil's transcriptome changes as they migrate through different compartments using microarray and bio-informatic approaches. Our study demonstrates that neutrophils are highly plastic cells where normal environmental cues result in a site-specific neutrophil transcriptome. We demonstrate that neutrophil genes undergo one of four distinct expression change patterns as they move from bone marrow through the circulation to sites of inflammation: (i) continuously increasing; (ii) continuously decreasing; (iii) a down-up-down; and (iv) an up-down-up pattern. Additionally, we demonstrate that the neutrophil migration signaling network and the balance between anti-apoptotic and pro-apoptotic signaling are two of the main regulatory mechanisms that change as the neutrophil transits through compartments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Nathan C . Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 2006; 6: 173–182.

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi SD, Deleo FR . Role of neutrophils in innate immunity: a systems biology-level approach. Wiley Interdiscip Rev Syst Biol Med 2009; 1: 309–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang X, Ding L, and Sandford A.J. Gene expression in mature neutrophils: early responses to inflammatory stimuli. Jo Leuk Biol 2004; 75: 358–372.

    Article  CAS  Google Scholar 

  4. Subrahmanyam YV, Newburger PE, Weissman SM . RNA expression patterns change dramatically in human neutrophils exposed to bacteria. Blood 2001; 97: 2457–2468.

    Article  CAS  PubMed  Google Scholar 

  5. Cassatella MA . The production of cytokines by polymorphonuclear neutrophils. Immunol Today 1995; 16: 21–26.

    Article  CAS  PubMed  Google Scholar 

  6. Gosselin E, Wardwell K, Rigby W, Guyre P . Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-gamma, and IL-3. J Immunol 1993; 151: 1482–1490.

    CAS  PubMed  Google Scholar 

  7. Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 2010; 115: 335–343.

    Article  CAS  PubMed  Google Scholar 

  8. Shaw JP, Chuang N, Yee H, Shamamian P . Polymorphonuclear neutrophils promote rFGF-2-induced angiogenesis in vivo. J Surg Res 2003; 109: 37–42.

    Article  CAS  PubMed  Google Scholar 

  9. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009; 16: 183–194.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Luo HR, Loison F . Constitutive neutrophil apoptosis: mechanisms and regulation. Am J Hematol 2008; 83: 288–295.

    Article  CAS  PubMed  Google Scholar 

  11. Witko-Sarsat VR, Pederzoli-Ribeil M, Hirsh E, Sozzani S, Cassatella MA . Regulating neutrophil apoptosis: new players enter the game. Trends Immunol 2011; 32: 117–124.

    Article  CAS  PubMed  Google Scholar 

  12. Hudock KM, Liu Y, Mei J, Marino RC, Hale JE, Dai N et al. Delayed resolution of lung inflammation in IL- 1RN2/2 mice reflects elevated IL-17A/G-CSF expression. Am J Respir Cell Mol Biol 2012; 47: 436–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gamonal JJ, Sanz M, O'Connor A, Acevedo A, Suarez I, Sanz A et al. Delayed neutrophil apoptosis in chronic periodontitis patients. J Clin Periodontol 2003; 30: 616–623.

    Article  CAS  PubMed  Google Scholar 

  14. Sun CX . Rac1 is the small GTPase responsible for regulating the neutrophil chemotaxis compass. Blood 2004; 104: 3758–3765.

    Article  CAS  PubMed  Google Scholar 

  15. Hasenberg M, Köhler A, Bonifatius S, Borucki K, Riek-Burchardt M, Achilles J et al. Rapid immunomagnetic negative enrichment of neutrophil granulocytes from murine bone marrow for functional studies in vitro and in vivo. PLoS ONE 2011; 6: e17314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jiang N . The effect of inflammation on the generation of plasma DNA from dead and dying cells in the peritoneum. J Leuk Biol 2004; 77: 296–302.

    Article  Google Scholar 

  17. Shen H, Kreisel D, Goldstein DR . Processes of sterile inflammation. J Immunol 2013; 191: 2857–2863.

    Article  CAS  PubMed  Google Scholar 

  18. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M, Gassmann M et al. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 2006; 7: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smyth GK . Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: 1–26.

    Article  Google Scholar 

  20. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 1995; 57: 289–300.

    Google Scholar 

  21. Huang DW, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2008; 4: 44–57.

    Article  Google Scholar 

  22. Zheng Q, Wang XJ . GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 2008; 36: W358–W363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chu VT, Gottardo R, Raftery AE, Bumgarner RE, Yeung K . MeV+R: using MeV as a graphical user interface for Bioconductor applications in microarray analysis. Genome Biol 2008; 9: R118.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yeung KY, Haynor DR, Ruzzo WL . Validating clustering for gene expression data. Bioinformatics 2001; 17: 309–318.

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M . Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J Bone Miner Res 2007; 23: 260–270.

    Article  CAS  Google Scholar 

  26. Luhtala N . Parker R. LSM1 over-expression in Saccharomyces cerevisiae depletes U6 snRNA levels. Nucleic Acids Res 2009; 37: 5529–5536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang F . The signaling mechanisms underlying cell polarity and chemotaxis. Cold Spring Harbor Perspect Biol 2009; 1: a002980–a002980.

    Article  Google Scholar 

  28. Kumar S, Xu J, Perkins C, Guo F, Snapper S, Finkelman FD, Zheng Y et al. Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood 2012; 120: 3563–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moulding DA, Akgul C, Derouet M, White MR, Edwards SW . BCL-2 family expression in human neutrophils during delayed and accelerated apoptosis. J Leuk Biol 2001; 70: 783–792.

    CAS  Google Scholar 

  30. Kirschnek S, Vier J, Gautam S, Frankenberg T, Rangelova S, Eitz-Ferrer P et al. Molecular analysis of neutrophil spontaneous apoptosis reveals a strong role for the pro-apoptotic BH3-only protein Noxa. Cell Death Differ 2011; 18: 1805–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atallah M, Krispin A, Trahtemberg U, Ben-Hamron S, Grau A, Verbovetski I et al. Constitutive neutrophil apoptosis: regulation by cell concentration via S100 A8/9 and the MEK–ERK pathway. PLoS ONE 2012; 7: e29333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kobayashi SD . Spontaneous neutrophil apoptosis and regulation of cell survival by granulocyte macrophage-colony stimulating factor. J Leuk Biol 2005; 78: 1408–1418.

    Article  CAS  Google Scholar 

  33. Perretti M . Editorial: To resolve or not to resolve: Annexin A1 pushes resolution on track. J Leuk Biol 2012; 92: 245–247.

    Article  CAS  Google Scholar 

  34. Vong L, D'Acquisto F, Pederzoli-Ribeil M, Lavagno L, Flower RJ, Witko-Sarsat V et al. Annexin 1 cleavage in activated neutrophils: a pivotal role for proteinase 3. J Biol Chem 2007; 282: 29998–30004.

    Article  CAS  PubMed  Google Scholar 

  35. Arur S, Uche UE, Rezaul K, Fong M, Scranton V, Cowan AE et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev Cell 2003; 4: 587–598.

    Article  CAS  PubMed  Google Scholar 

  36. Theilgaard-Monch K . The transcriptional program of terminal granulocytic differentiation. Blood 2005; 105: 1785–1796.

    Article  PubMed  Google Scholar 

  37. Cheretakis C, Leung R, Sun CX, Dror Y, Glogauer M . Timing of neutrophil tissue repopulation predicts restoration of innate immune protection in a murine bone marrow transplantation model. Blood 2006; 108: 2821–2826.

    Article  CAS  PubMed  Google Scholar 

  38. Pillay J, Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JAM et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 2010; 116: 625–627.

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi SD, Braughton KR, Whitney AR, Voyich JM, Schwan TG, Musser JM et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc Natl Acad Sci USA 2003; 100: 10948–10953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coldren CD, Nick JA, Poch KR, Wollum MD, Fouty BW, O'Brien JM et al. Functional and genomic changes induced by alveolar transmigration in human neutrophils. Am J Physiol Lung Cell Mol Physiol 2006; 291: L1267–L1276.

    Article  CAS  PubMed  Google Scholar 

  41. Kotz KT, Xiao W, Miller-Graziano C, Qian WJ, Russom A, Warner EA et al. Clinical microfluidics for neutrophil genomics and proteomics. Nat Med 2010; 16: 1038–1043.

    Article  Google Scholar 

  42. Pelletier M, Micheletti A, Cassatella MA . Modulation of human neutrophil survival and antigen expression by activated CD4+ and CD8+ T cells. J Leuk Biol 2010; 88: 1163–1170.

    Article  CAS  Google Scholar 

  43. Davey MS, Tomassia N, Rossato M, Bazzoni F, Calzetti F, Bruderek K et al. Failure to detect production of IL-10 by activated human neutrophils. Nat Immunol 2011; 12: 1017–1018.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang X, Ding L, Sandford AJ . Selection of reference genes for gene expression studies in human neutrophils by real-time PCR. BMC Mol Biol 2005; 6: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hu Y . Isolation of human and mouse neutrophils ex vivo and in vitro. Leuc Methods Protoc 2011; 844: 101–113.

    Google Scholar 

  46. Siemsen DW, Quinn M . Neutrophil isolation from nonhuman species. Methods Mol Biol 2007; 412: 21–34.

    Article  PubMed  Google Scholar 

  47. de Santo C, Arscott R, Booth S, Karydis I, Jones M, Asher R et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 2010; 11: 1039–1046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kumar S, Xu J, Perkins C, Guo F, Snapper S, Finkelman FD, Zheng Y et al. Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. Blood 2012; 120: 3563–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fridlender ZG, Sun J, Mishalian I, Singhal S, Cheng G, Kapoor V et al. Transcriptomic Analysis Comparing Tumor-Associated Neutrophils with Granulocytic Myeloid-Derived Suppressor Cells and Normal Neutrophils. PLoS ONE 2012; 7( 2): e31524. doi:10.1371/journal.pone.0031524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Servant G, Weiner OD, Neptune ER, Sedat JW, Bourne HR . Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Mol Biol Cell 1999; 10: 1163–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhelev DV, Alteraifi AM, Chodniewicz D . Controlled pseudopod extension of human neutrophils stimulated with different chemoattractants. Biophys J 2004; 87: 688–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wong CH, Heit B, Kubes P . Molecular regulators of leucocyte chemotaxis during inflammation. Cardiovasc Res 2010; 86: 183–191.

    Article  CAS  PubMed  Google Scholar 

  53. Sun R, Iribarren P, Zhang N, Zhou Y, Gong W, Cho EH et al. Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor. J Immunol 2004; 173: 428–436.

    Article  CAS  PubMed  Google Scholar 

  54. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M et al. International union of basic and clinical pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 2009; 61: 119–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suraneni P, Rubinstein B, Unruh JR, Durnin M, Hanein D, Li R . The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J Cell Biol 2012; 197: 239–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maianski NA, Maianski AN, Kuijpers TW, Roos D . Apoptosis of neutrophils. Acta Haematol 2004; 111: 56–66.

    Article  CAS  PubMed  Google Scholar 

  57. Hannon R . Aberrant inflammation and resistance to glucocorticoids in Annexin 1−/− mouse. FASEB J 2003; 17: 253–255.

    Article  CAS  PubMed  Google Scholar 

  58. Lakschevitz FS, Aboodi GM, Glogauer M . Oral neutrophil transcriptome changes result in a pro-survival phenotype in periodontal diseases. PLoS ONE 2013; 8: e68983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lakschevitz FS, Aboodi GM, Glogauer M . Oral neutrophils display a site-specific phenotype characterized by expression of T-cell receptors. J Periodontol 2012; 84: 1493–1503.

    Article  PubMed  Google Scholar 

  60. Puellmann K, Kaminski WE, Vogel M, Nebe CT, Schroeder J, Wolf H et al. A variable immunoreceptor in a subpopulation of human neutrophils. Proc Natl Acad Sci USA 2006; 103: 14441–14446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Kleijn S, Langereis JD, Leentjens J, Kox M, Netea MG, Koenderman L et al. IFN-γ-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1. PLoS ONE 2013; 8: e72249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by an operating grant from The Canadian Institutes of Health Research (CIHR, Ottawa, ON, Canada) to MG. FL is supported by CIHR Training Fellowship, TGF-53877 and the Harron scholarship (Faculty of Dentistry, University of Toronto). The authors give special thanks to Dionne White from The Flow Cytometric Facility of the Immunology Department, Faculty of Medicine of University of Toronto for assistance with flow cytometric analysis, also to Guillermo Casallo and Pingzhao Hu of the Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Canada, for assistance with microarray analysis and statistical analysis respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Glogauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Supplementary Information accompanies the paper on Cellular & Molecular Immunology's website. (http://www.nature.com/cmi).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakschevitz, F., Visser, M., Sun, C. et al. Neutrophil transcriptional profile changes during transit from bone marrow to sites of inflammation. Cell Mol Immunol 12, 53–65 (2015). https://doi.org/10.1038/cmi.2014.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cmi.2014.37

Keywords

This article is cited by

Search

Quick links