Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Ex vivo expansion of cord blood

Abstract

A marked increase in the utilization of umbilical cord blood (UCB) transplantation has been observed in recent years; however, the use of UCB as a hematopoietic stem cell (HSC) source is limited primarily by the number of progenitor cells contained in the graft. Graft failure, delayed engraftment and profound delay in immune reconstitution lead to significant morbidity and mortality in adults. The lack of cells available for post transplant therapies, such as donor lymphocyte infusions, has also been considered to be a disadvantage of UCB. To improve outcomes and extend applicability of UCB transplantation, one potential solution is ex vivo expansion of UCB. Investigators have used several methods, including liquid suspension culture with various cytokines and expansion factors, co-culture with stromal elements and continuous perfusion systems. Techniques combining ex vivo expanded and unmanipulated UCB are being explored to optimize the initial engraftment kinetics as well as the long-term durability. The optimal expansion conditions are still not known; however, recent studies suggest that expanded UCB is safe. It is hoped that by ex vivo expansion of UCB, a resulting decrease in the morbidity and mortality of UCB transplantation will be observed, and that the availability of additional cells may allow adoptive immunotherapy or gene transfer therapies in the UCB setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M et al. Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA 1992; 89: 4109–4113.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cohen Y, Kreiser D, Mayorov M, Nagler A . Unrelated and related cord blood banking and hematopoietic graft engineering. Cell Tissue Bank 2003; 4: 29–35.

    PubMed  Google Scholar 

  3. Cohen Y, Nagler A . Umbilical cord blood transplantation--how, when and for whom? Blood Rev 2004; 18: 167–179.

    PubMed  Google Scholar 

  4. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC et al. Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 1996; 335: 157–166.

    CAS  PubMed  Google Scholar 

  5. Broxmeyer HE, Gluckman E, Auerbach A, Douglas GW, Friedman H, Cooper S et al. Human umbilical cord blood: a clinically useful source of transplantable hematopoietic stem/progenitor cells. Int J Cell Cloning 1990; 8 (Suppl 1): 76–89; discussion 89–91.

    PubMed  Google Scholar 

  6. Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA 1989; 86: 3828–3832.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE et al. Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 2001; 344: 1815–1822.

    CAS  PubMed  Google Scholar 

  8. Migliaccio AR, Adamson JW, Stevens CE, Dobrila NL, Carrier CM, Rubinstein P . Cell dose and speed of engraftment in placental/umbilical cord blood transplantation: graft progenitor cell content is a better predictor than nucleated cell quantity. Blood 2000; 96: 2717–2722.

    CAS  PubMed  Google Scholar 

  9. Gluckman E, Rocha V, Chevret S . Results of unrelated umbilical cord blood hematopoietic stem cell transplantation. Rev Clin Exp Hematol 2001; 5: 87–99.

    CAS  PubMed  Google Scholar 

  10. Gluckman E, Rocha V, Arcese W, Michel G, Sanz G, Chan KW et al. Factors associated with outcomes of unrelated cord blood transplant: guidelines for donor choice. Exp Hematol 2004; 32: 397–407.

    CAS  PubMed  Google Scholar 

  11. Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR et al. Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 1998; 339: 1565–1577.

    Article  CAS  PubMed  Google Scholar 

  12. Gluckman E, Rocha V, Boyer-Chammard A, Locatelli F, Arcese W, Pasquini R et al. Outcome of cord-blood transplantation from related and unrelated donors. Eurocord Transplant Group and the European Blood and Marrow Transplantation Group. N Engl J Med 1997; 337: 373–381.

    CAS  PubMed  Google Scholar 

  13. Kurtzberg J, Prasad VK, Carter SL, Wagner JE, Baxter-Lowe LA, Wall D et al. Results of the Cord Blood Transplantation Study (COBLT): clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies. Blood 2008; 112: 4318–4327.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Martin PL, Carter SL, Kernan NA, Sahdev I, Wall D, Pietryga D et al. Results of the cord blood transplantation study (COBLT): outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with lysosomal and peroxisomal storage diseases. Biol Blood Marrow Transplant 2006; 12: 184–194.

    PubMed  Google Scholar 

  15. Sawczyn KK, Quinones R, Malcolm J, Foreman N, Garrington T, Gore L et al. Cord blood transplant in childhood ALL. Pediatr Blood Cancer 2005; 45: 964–970.

    PubMed  Google Scholar 

  16. Szabolcs P, Niedzwiecki D . Immune reconstitution after unrelated cord blood transplantation. Cytotherapy 2007; 9: 111–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomson BG, Robertson KA, Gowan D, Heilman D, Broxmeyer HE, Emanuel D et al. Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood 2000; 96: 2703–2711.

    CAS  PubMed  Google Scholar 

  18. Weinreb S, Delgado JC, Clavijo OP, Yunis EJ, Bayer-Zwirello L, Polansky L et al. Transplantation of unrelated cord blood cells. Bone Marrow Transplant 1998; 22: 193–196.

    CAS  PubMed  Google Scholar 

  19. Barker JN, Weisdorf DJ, Wagner JE . Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N Engl J Med 2001; 344: 1870–1871.

    CAS  PubMed  Google Scholar 

  20. Barker JN, Weisdorf DJ, DeFor TE, Blazar BR, Miller JS, Wagner JE . Rapid and complete donor chimerism in adult recipients of unrelated donor umbilical cord blood transplantation after reduced-intensity conditioning. Blood 2003; 102: 1915–1919.

    CAS  PubMed  Google Scholar 

  21. De Lima M, St John LS, Wieder ED, Lee MS, McMannis J, Karandish S et al. Double-chimaerism after transplantation of two human leucocyte antigen mismatched, unrelated cord blood units. Br J Haematol 2002; 119: 773–776.

    PubMed  Google Scholar 

  22. Fernandez MN, Regidor C, Cabrera R, Garcia-Marco J, Briz M, Fores R et al. Cord blood transplants: early recovery of neutrophils from co-transplanted sibling haploidentical progenitor cells and lack of engraftment of cultured cord blood cells, as ascertained by analysis of DNA polymorphisms. Bone Marrow Transplant 2001; 28: 355–363.

    CAS  PubMed  Google Scholar 

  23. Shpall EJ, Quinones R, Giller R, Zeng C, Baron AE, Jones RB et al. Transplantation of ex vivo expanded cord blood. Biol Blood Marrow Transplant 2002; 8: 368–376.

    PubMed  Google Scholar 

  24. Pecora AL, Stiff P, Jennis A, Goldberg S, Rosenbluth R, Price P et al. Prompt and durable engraftment in two older adult patients with high risk chronic myelogenous leukemia (CML) using ex vivo expanded and unmanipulated unrelated umbilical cord blood. Bone Marrow Transplant 2000; 25: 797–799.

    CAS  PubMed  Google Scholar 

  25. Jaroscak J, Goltry K, Smith A, Waters-Pick B, Martin PL, Driscoll TA et al. Augmentation of umbilical cord blood (UCB) transplantation with ex vivo-expanded UCB cells: results of a phase 1 trial using the AastromReplicell System. Blood 2003; 101: 5061–5067.

    CAS  PubMed  Google Scholar 

  26. Pecora AL, Stiff P, LeMaistre CF, Bayer R, Bachier C, Goldberg SL et al. A phase II trial evaluating the safety and effectiveness of the AastromReplicell system for augmentation of low-dose blood stem cell transplantation. Bone Marrow Transplant 2001; 28: 295–303.

    CAS  PubMed  Google Scholar 

  27. de Lima M, McMannis J, Gee A, Komanduri K, Couriel D, Andersson BS et al. Transplantation of ex vivo expanded cord blood cells using the copper chelator tetraethylenepentamine: a phase I/II clinical trial. Bone Marrow Transplant 2008; 41: 771–778.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McNiece I, Jones R, Bearman SI, Cagnoni P, Nieto Y, Franklin W et al. Ex vivo expanded peripheral blood progenitor cells provide rapid neutrophil recovery after high-dose chemotherapy in patients with breast cancer. Blood 2000; 96: 3001–3007.

    CAS  PubMed  Google Scholar 

  29. McNiece I, Jones R, Cagnoni P, Bearman S, Nieto Y, Shpall EJ . Ex-vivo expansion of hematopoietic progenitor cells: preliminary results in breast cancer. Hematol Cell Ther 1999; 41: 82–86.

    CAS  PubMed  Google Scholar 

  30. Purdy MH, Hogan CJ, Hami L, McNiece I, Franklin W, Jones RB et al. Large volume ex vivo expansion of CD34-positive hematopoietic progenitor cells for transplantation. J Hematother 1995; 4: 515–525.

    CAS  PubMed  Google Scholar 

  31. Guenechea G, Gan OI, Dorrell C, Dick JE . Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2001; 2: 75–82.

    CAS  PubMed  Google Scholar 

  32. Lemischka IR, Jordan CT . The return of clonal marking sheds new light on human hematopoietic stem cells. Nat Immunol 2001; 2: 11–12.

    CAS  PubMed  Google Scholar 

  33. Hogan CJ, Shpall EJ, Keller G . Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci USA 2002; 99: 413–418.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Summers YJ, Heyworth CM, de Wynter EA, Chang J, Testa NG . Cord blood G(0) CD34+ cells have a thousand-fold higher capacity for generating progenitors in vitro than G(1) CD34+ cells. Stem Cells 2001; 19: 505–513.

    CAS  PubMed  Google Scholar 

  35. Summers YJ, Heyworth CM, de Wynter EA, Hart CA, Chang J, Testa NG . AC133+ G0 cells from cord blood show a high incidence of long-term culture-initiating cells and a capacity for more than 100 million-fold amplification of colony-forming cells in vitro. Stem Cells 2004; 22: 704–715.

    PubMed  Google Scholar 

  36. Williams DA . Ex vivo expansion of hematopoietic stem and progenitor cells--robbing Peter to pay Paul? Blood 1993; 81: 3169–3172.

    CAS  PubMed  Google Scholar 

  37. McNiece IK, Almeida-Porada G, Shpall EJ, Zanjani E . Ex vivo expanded cord blood cells provide rapid engraftment in fetal sheep but lack long-term engrafting potential. Exp Hematol 2002; 30: 612–616.

    PubMed  Google Scholar 

  38. Von Drygalski A, Alespeiti G, Ren L, Adamson JW . Murine bone marrow cells cultured ex vivo in the presence of multiple cytokine combinations lose radioprotective and long-term engraftment potential. Stem Cells Dev 2004; 13: 101–111.

    CAS  PubMed  Google Scholar 

  39. Holyoake TL, Alcorn MJ, Richmond L, Farrell E, Pearson C, Green R et al. CD34 positive PBPC expanded ex vivo may not provide durable engraftment following myeloablative chemoradiotherapy regimens. Bone Marrow Transplant 1997; 19: 1095–1101.

    CAS  PubMed  Google Scholar 

  40. Piacibello W, Sanavio F, Severino A, Dane A, Gammaitoni L, Fagioli F et al. Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34(+) cord blood cells after ex vivo expansion: evidence for the amplification and self-renewal of repopulating stem cells. Blood 1999; 93: 3736–3749.

    CAS  PubMed  Google Scholar 

  41. Lewis ID, Almeida-Porada G, Du J, Lemischka IR, Moore KA, Zanjani ED et al. Umbilical cord blood cells capable of engrafting in primary, secondary, and tertiary xenogeneic hosts are preserved after ex vivo culture in a noncontact system. Blood 2001; 97: 3441–3449.

    CAS  PubMed  Google Scholar 

  42. Guenechea G, Segovia JC, Albella B, Lamana M, Ramirez M, Regidor C et al. Delayed engraftment of nonobese diabetic/severe combined immunodeficient mice transplanted with ex vivo-expanded human CD34(+) cord blood cells. Blood 1999; 93: 1097–1105.

    CAS  PubMed  Google Scholar 

  43. Zhai QL, Qiu LG, Li Q, Meng HX, Han JL, Herzig RH et al. Short-term ex vivo expansion sustains the homing-related properties of umbilical cord blood hem. Haematologica 89: 265–273.

  44. Glimm H, Eaves CJ . Direct evidence for multiple self-renewal divisions of human in vivo repopulating hematopoietic cells in short-term culture. Blood 1999; 94: 2161–2168.

    CAS  PubMed  Google Scholar 

  45. Glimm H, Oh IH, Eaves CJ . Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood 2000; 96: 4185–4193.

    CAS  PubMed  Google Scholar 

  46. Mohamed AA, Ibrahim AM, El-Masry MW, Mansour IM, Khroshied MA, Gouda HM et al. Ex vivo expansion of stem cells: defining optimum conditions using various cytokines. Lab Hematol 2006; 12: 86–93.

    CAS  PubMed  Google Scholar 

  47. Gammaitoni L, Weisel KC, Gunetti M, Wu KD, Bruno S, Pinelli S et al. Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood 2004; 103: 4440–4448.

    CAS  PubMed  Google Scholar 

  48. Piacibello W, Sanavio F, Garetto L, Severino A, Dane A, Gammaitoni L et al. Differential growth factor requirement of primitive cord blood hematopoietic stem cell for self-renewal and amplification vs proliferation and differentiation. Leukemia 1998; 12: 718–727.

    CAS  PubMed  Google Scholar 

  49. Murray LJ, Young JC, Osborne LJ, Luens KM, Scollay R, Hill BL . Thrombopoietin, flt3, and kit ligands together suppress apoptosis of human mobilized CD34+ cells and recruit primitive CD34+ Thy-1+ cells into rapid division. Exp Hematol 1999; 27: 1019–1028.

    CAS  PubMed  Google Scholar 

  50. Young JC, Bruno E, Luens KM, Wu S, Backer M, Murray LJ . Thrombopoietin stimulates megakaryocytopoiesis, myelopoiesis, and expansion of CD34+ progenitor cells from single CD34+Thy-1+Lin- primitive progenitor cells. Blood 1996; 88: 1619–1631.

    CAS  PubMed  Google Scholar 

  51. Lazzari L, Lucchi S, Montemurro T, Porretti L, Lopa R, Rebulla P et al. Evaluation of the effect of cryopreservation on ex vivo expansion of hematopoietic progenitors from cord blood. Bone Marrow Transplant 2001; 28: 693–698.

    CAS  PubMed  Google Scholar 

  52. Lazzari L, Lucchi S, Porretti L, Montemurro T, Giordano R, Lopa R et al. Comparison of different serum-free media for ex vivo expansion of HPCs from cord blood using thrombopoietin, Flt-3 ligand, IL-6, and IL-11. Transfusion 2001; 41: 718–719.

    CAS  PubMed  Google Scholar 

  53. Lazzari L, Lucchi S, Rebulla P, Porretti L, Puglisi G, Lecchi L et al. Long-term expansion and maintenance of cord blood haematopoietic stem cells using thrombopoietin, Flt3-ligand, interleukin (IL)-6 and IL-11 in a serum-free and stroma-free culture system. Br J Haematol 2001; 112: 397–404.

    CAS  PubMed  Google Scholar 

  54. Filip S, Vavrova J, Vokurkova D, Blaha M, Vanasek J . Myeloid differentiation and maturation of SCF+IL-3+IL-11 expanded AC133+/CD34+ cells selected from high-risk breast cancer patients. Neoplasma 2000; 47: 73–80.

    CAS  PubMed  Google Scholar 

  55. Vavrova J, Filip S, Vokurkova D, Blaha M, Vanasek J, Jebavy L . Ex vivo expansion CD34+/AC133+-selected autologous peripheral blood progenitor cells (PBPC) in high-risk breast cancer patients receiving intensive chemotherapy. Hematol Cell Ther 1999; 41: 105–112.

    CAS  PubMed  Google Scholar 

  56. McNiece I, Kubegov D, Kerzic P, Shpall EJ, Gross S . Increased expansion and differentiation of cord blood products using a two-step expansion culture. Exp Hematol 2000; 28: 1181–1186.

    CAS  PubMed  Google Scholar 

  57. de Lima M, McMannis JD, Saliba R, Worth L, Kebriaei P, Popat U et al. Double cord blood transplantation (CBT) with and without ex-vivo expansion (EXP): a randomized, controlled study. Blood (ASH Annu Meet Abstr) 2008; 112: Abstract 154.

  58. Yao CL, Chu IM, Hsieh TB, Hwang SM . A systematic strategy to optimize ex vivo expansion medium for human hematopoietic stem cells derived from umbilical cord blood mononuclear cells. Exp Hematol 2004; 32: 720–727.

    CAS  PubMed  Google Scholar 

  59. Yao CL, Feng YH, Lin XZ, Chu IM, Hsieh TB, Hwang SM . Characterization of serum-free ex vivo-expanded hematopoietic stem cells derived from human umbilical cord blood CD133(+) cells. Stem Cells Dev 2006; 15: 70–78.

    CAS  PubMed  Google Scholar 

  60. Peled T, Landau E, Mandel J, Glukhman E, Goudsmid NR, Nagler A et al. Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Exp Hematol 2004; 32: 547–555.

    CAS  PubMed  Google Scholar 

  61. Peled T, Landau E, Prus E, Treves AJ, Nagler A, Fibach E . Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells. Br J Haematol 2002; 116: 655–661.

    CAS  PubMed  Google Scholar 

  62. Peled T, Mandel J, Goudsmid RN, Landor C, Hasson N, Harati D et al. Pre-clinical development of cord blood-derived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy 2004; 6: 344–355.

    CAS  PubMed  Google Scholar 

  63. Young JC, Wu S, Hansteen G, Du C, Sambucetti L, Remiszewski S et al. Inhibitors of histone deacetylases promote hematopoietic stem cell self-renewal. Cytotherapy 2004; 6: 328–336.

    CAS  PubMed  Google Scholar 

  64. Sato N, Meijer L, Skaltsounis L, Greengard P, Brivanlou AH . Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004; 10: 55–63.

    CAS  PubMed  Google Scholar 

  65. Delaney C, Brashem-Stein C, Voorhies H, Gutman J, Dallas M, Heimfeld S et al. Notch-mediated expansion of human cord blood progenitor cells results in rapid myeloid reconstitution in vivo following myeloablative cord blood transplantation blood. Blood (ASH Annu Meet Abstr) 2008; 112: Abstract 212.

  66. Delaney C, Varnum-Finney B, Aoyama K, Brashem-Stein C, Bernstein ID . Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 2005; 106: 2693–2699.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Schofield R . The stem cell system. Biomed Pharmacother 1983; 37: 375–380.

    CAS  PubMed  Google Scholar 

  68. Lemischka IR, Moore KA . Stem cells: interactive niches. Nature 2003; 425: 778–779.

    CAS  PubMed  Google Scholar 

  69. Fuchs E, Tumbar T, Guasch G . Socializing with the neighbors: stem cells and their niche. Cell 2004; 116: 769–778.

    CAS  PubMed  Google Scholar 

  70. Allen TD, Dexter TM . The essential cells of the hemopoietic microenvironment. Exp Hematol 1984; 12: 517–521.

    CAS  PubMed  Google Scholar 

  71. Allen TD, Simons PJ, Dexter TM . Haemopoietic microenvironments in vitro--which cells are involved? Blood Cells 1984; 10: 467–471.

    CAS  PubMed  Google Scholar 

  72. Chang J, Allen TD, Dexter TM . Long-term bone marrow cultures: their use in autologous marrow transplantation. Cancer Cells 1989; 1: 17–24.

    CAS  PubMed  Google Scholar 

  73. Dexter TM, Allen TD, Lajtha LG, Schofield R, Lord BI . Stimulation of differentiation and proliferation of haemopoietic cells in vitro. J Cell Physiol 1973; 82: 461–473.

    CAS  PubMed  Google Scholar 

  74. Dexter TM, Coutinho LH, Spooncer E, Heyworth CM, Daniel CP, Schiro R et al. Stromal cells in haemopoiesis. Ciba Found Symp 1990; 148: 76–86; discussion 86-95.

    CAS  PubMed  Google Scholar 

  75. Dexter TM, Allen TD, Lajtha LG . Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977; 91: 335–344.

    CAS  PubMed  Google Scholar 

  76. Moore MA, Sheridan AP, Allen TD, Dexter TM . Prolonged hematopoiesis in a primate bone marrow culture system: characteristics of stem cell production and the hematopoietic microenvironment. Blood 1979; 54: 775–793.

    CAS  PubMed  Google Scholar 

  77. Roberts RA, Spooncer E, Parkinson EK, Lord BI, Allen TD, Dexter TM . Metabolically inactive 3T3 cells can substitute for marrow stromal cells to promote the proliferation and development of multipotent haemopoietic stem cells. J Cell Physiol 1987; 132: 203–214.

    CAS  PubMed  Google Scholar 

  78. Yamazaki K, Roberts RA, Spooncer E, Dexter TM, Allen TD . Cellular interactions between 3T3 cells and interleukin-3-dependent multipotent haemopoietic cells: a model system for stromal-cell-mediated haemopoiesis. J Cell Physiol 1989; 139: 301–312.

    CAS  PubMed  Google Scholar 

  79. Gartner S, Kaplan HS . Long-term culture of human bone marrow cells. Proc Natl Acad Sci USA 1980; 77: 4756–4759.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hackney JA, Charbord P, Brunk BP, Stoeckert CJ, Lemischka IR, Moore KA . A molecular profile of a hematopoietic stem cell niche. Proc Natl Acad Sci USA 2002; 99: 13061–13066.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Etheridge SL, Spencer GJ, Heath DJ, Genever PG . Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 2004; 22: 849–860.

    CAS  PubMed  Google Scholar 

  82. Kadereit S, Deeds LS, Haynesworth SE, Koc ON, Kozik MM, Szekely E et al. Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34(+)/CD38(−) early progenitors cultured over human MSCs as a feeder layer. Stem Cells 2002; 20: 573–582.

    CAS  PubMed  Google Scholar 

  83. Rattis FM, Voermans C, Reya T . Wnt signaling in the stem cell niche. Curr Opin Hematol 2004; 11: 88–94.

    CAS  PubMed  Google Scholar 

  84. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    CAS  PubMed  Google Scholar 

  85. Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL . Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 2000; 9: 841–848.

    CAS  PubMed  Google Scholar 

  86. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL . Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176: 57–66.

    CAS  PubMed  Google Scholar 

  87. Zhang Y, Li C, Jiang X, Zhang S, Wu Y, Liu B et al. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol 2004; 32: 657–664.

    CAS  PubMed  Google Scholar 

  88. Yamaguchi M, Hirayama F, Kanai M, Sato N, Fukazawa K, Yamashita K et al. Serum-free coculture system for ex vivo expansion of human cord blood primitive progenitors and SCID mouse-reconstituting cells using human bone marrow primary stromal cells. Exp Hematol 2001; 29: 174–182.

    CAS  PubMed  Google Scholar 

  89. Yamaguchi M, Hirayama F, Wakamoto S, Fujihara M, Murahashi H, Sato N et al. Bone marrow stromal cells prepared using AB serum and bFGF for hematopoietic stem cells expansion. Transfusion 2002; 42: 921–927.

    CAS  PubMed  Google Scholar 

  90. Yamaguchi M, Hirayama F, Murahashi H, Azuma H, Sato N, Miyazaki H et al. Ex vivo expansion of human UC blood primitive hematopoietic progenitors and transplantable stem cells using human primary BM stromal cells and human AB serum. Cytotherapy 2002; 4: 109–118.

    CAS  PubMed  Google Scholar 

  91. Kanai M, Hirayama F, Yamaguchi M, Ohkawara J, Sato N, Fukazawa K et al. Stromal cell-dependent ex vivo expansion of human cord blood progenitors and augmentation of transplantable stem cell activity. Bone Marrow Transplant 2000; 26: 837–844.

    CAS  PubMed  Google Scholar 

  92. McNiece I, Harrington J, Turney J, Kellner J, Shpall EJ . Ex vivo expansion of cord blood mononuclear cells on mesenchymal stem cells. Cytotherapy 2004; 6: 311–317.

    CAS  PubMed  Google Scholar 

  93. in’t Anker PS, Noort WA, Kruisselbrink AB, Scherjon SA, Beekhuizen W, Willemze R et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2003; 31: 881–889.

    Google Scholar 

  94. in’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102: 1548–1549.

    Google Scholar 

  95. in’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 2003; 88: 845–852.

    Google Scholar 

  96. Ahrens N, Tormin A, Paulus M, Roosterman D, Salama A, Krenn V et al. Mesenchymal stem cell content of human vertebral bone marrow. Transplantation 2004; 78: 925–929.

    PubMed  Google Scholar 

  97. Noort WA, Kruisselbrink AB, In’t Anker PS, Kruger M, van Bezooijen RL, de Paus RA et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2002; 30: 870–878.

    PubMed  Google Scholar 

  98. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O . Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003; 57: 11–20.

    CAS  PubMed  Google Scholar 

  99. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.

    PubMed  Google Scholar 

  100. Gotherstrom C, Ringden O, Tammik C, Zetterberg E, Westgren M, Le Blanc K . Immunologic properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol 2004; 190: 239–245.

    CAS  PubMed  Google Scholar 

  101. Le Blanc K . Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 2003; 5: 485–489.

    CAS  PubMed  Google Scholar 

  102. Rasmusson I, Ringden O, Sundberg B, Le Blanc K . Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation 2003; 76: 1208–1213.

    PubMed  Google Scholar 

  103. Le Blanc K, Tammik C, Rosendahl K, Zetterberg E, Ringden O . HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 2003; 31: 890–896.

    CAS  PubMed  Google Scholar 

  104. Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K . Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant 2003; 32: 265–272.

    CAS  PubMed  Google Scholar 

  105. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM . Adult bone marrow is a rich source of human mesenchymal ′stem′ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 2003; 121: 368–374.

    PubMed  Google Scholar 

  106. Bakhshi T, Zabriskie RC, Bodie S, Kidd S, Ramin S, Paganessi LA et al. Mesenchymal stem cells from the Wharton′s jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture. Transfusion 2008; 48: 2638–2644.

    PubMed  PubMed Central  Google Scholar 

  107. Le Blanc K, Rasmusson I, Gotherstrom C, Seidel C, Sundberg B, Sundin M et al. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol 2004; 60: 307–315.

    CAS  PubMed  Google Scholar 

  108. de Lima M, McNiece I, McMannis J, Hosing C, Kebraei P, Komanduri K et al. Double cord blood transplantations (CBT) with ex-vivo expansion (EXP) of one unit utilizing a mesenchymal stromal cell (MSC) platform. Biol Blood Marrow Transplant 2009; 15(Suppl 2): Abstract 122.

  109. De Angeli S, Di Liddo R, Buoro S, Toniolo L, Conconi MT, Belloni AS et al. New immortalized human stromal cell lines enhancing in vitro expansion of cord blood hematopoietic stem cells. Int J Mol Med 2004; 13: 363–371.

    CAS  PubMed  Google Scholar 

  110. Emerson SG, Palsson BO, Clarke MF, Silver SM, Adams PT, Koller MR et al. In vitro expansion of hematopoietic cells for clinical application. Cancer Treat Res 1995; 76: 215–223.

    CAS  PubMed  Google Scholar 

  111. Van Zant G, Rummel SA, Koller MR, Larson DB, Drubachevsky I, Palsson M et al. Expansion in bioreactors of human progenitor populations from cord blood and mobilized peripheral blood. Blood Cells 1994; 20: 482–490; discussion 491.

    CAS  PubMed  Google Scholar 

  112. Koller MR, Emerson SG, Palsson BO . Large-scale expansion of human stem and progenitor cells from bone marrow mononuclear cells in continuous perfusion cultures. Blood 1993; 82: 378–384.

    CAS  PubMed  Google Scholar 

  113. Koller MR, Manchel I, Maher RJ, Goltry KL, Armstrong RD, Smith AK . Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplant 1998; 21: 653–663.

    CAS  PubMed  Google Scholar 

  114. Koller MR, Manchel I, Newsom BS, Palsson MA, Palsson BO . Bioreactor expansion of human bone marrow: comparison of unprocessed, density-separated, and CD34-enriched cells. J Hematother 1995; 4: 159–169.

    CAS  PubMed  Google Scholar 

  115. Tsai S, Emerson SG, Sieff CA, Nathan DG . Isolation of a human stromal cell strain secreting hemopoietic growth factors. J Cell Physiol 1986; 127: 137–145.

    CAS  PubMed  Google Scholar 

  116. Meagher RC, Salvado AJ, Wright DG . An analysis of the multilineage production of human hematopoietic progenitors in long-term bone marrow culture: evidence that reactive oxygen intermediates derived from mature phagocytic cells have a role in limiting progenitor cell self-renewal. Blood 1988; 72: 273–281.

    CAS  PubMed  Google Scholar 

  117. Astori G, Adami V, Mambrini G, Bigi L, Cilli M, Facchini A et al. Evaluation of ex vivo expansion and engraftment in NOD-SCID mice of umbilical cord blood CD34+ cells using the DIDECO ″Pluricell System″. Bone Marrow Transplant 2005; 35: 1101–1106.

    CAS  PubMed  Google Scholar 

  118. Liu Y, Liu T, Fan X, Ma X, Cui Z . Ex vivo expansion of hematopoietic stem cells derived from umbilical cord blood in rotating wall vessel. J Biotechnol 2006; 124: 592–601.

    CAS  PubMed  Google Scholar 

  119. Mazur MA, Davis CC, Szabolcs P . Ex vivo expansion and Th1/Tc1 maturation of umbilical cord blood T cells by CD3/CD28 costimulation. Biol Blood Marrow Transplant 2008; 14: 1190–1196.

    PubMed  PubMed Central  Google Scholar 

  120. Boissel L, Tuncer HH, Betancur M, Wolfberg A, Klingemann H . Umbilical cord mesenchymal stem cells increase expansion of cord blood natural killer cells. Biol Blood Marrow Transplant 2008; 14: 1031–1038.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S S Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, S., Sola, C., de Lima, M. et al. Ex vivo expansion of cord blood. Bone Marrow Transplant 44, 673–681 (2009). https://doi.org/10.1038/bmt.2009.284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2009.284

Keywords

This article is cited by

Search

Quick links