Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Cost-effective strategies for completing the interactome

Abstract

Comprehensive protein-interaction mapping projects are underway for many model species and humans. A key step in these projects is estimating the time, cost and personnel required for obtaining an accurate and complete map. Here we modeled the cost of interaction-map completion for various experimental designs. We showed that current efforts may require up to 20 independent tests covering each protein pair to approach completion. We explored designs for reducing this cost substantially, including prioritization of protein pairs, probability thresholding and interaction prediction. The best experimental designs lowered cost by fourfold overall and >100-fold in early stages of mapping. We demonstrate the best strategy in an ongoing project in Drosophila melanogaster, in which we mapped 450 high-confidence interactions using 47 microtiter plates, versus thousands of plates expected using current designs. This study provides a framework for assessing the feasibility of interaction mapping projects and for future efforts to increase their efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulating an interaction mapping project.
Figure 2: Analysis of the coverage and saturation of the fly interactome as a function of the number of independent screens.
Figure 3: Fly and human interactome coverage costs for different experimental strategies.
Figure 4: Design and implementation of the prediction strategy for mapping the interactome.

Similar content being viewed by others

References

  1. Fields, S. High-throughput two-hybrid analysis. The promise and the peril. FEBS J. 272, 5391–5399 (2005).

    Article  CAS  Google Scholar 

  2. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  Google Scholar 

  3. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  Google Scholar 

  4. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004).

    Article  CAS  Google Scholar 

  5. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  Google Scholar 

  6. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    Article  CAS  Google Scholar 

  7. Suzuki, H. et al. Protein-protein interaction panel using mouse full-length cDNAs. Genome Res. 11, 1758–1765 (2001).

    Article  CAS  Google Scholar 

  8. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  9. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  Google Scholar 

  10. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  Google Scholar 

  11. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  Google Scholar 

  12. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).

    Article  CAS  Google Scholar 

  13. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  Google Scholar 

  14. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  Google Scholar 

  15. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  Google Scholar 

  16. Collins, S.R., Schuldiner, M., Krogan, N.J. & Weissman, J.S. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol. 7, R63 (2006).

    Article  Google Scholar 

  17. Bao, L. et al. Combining gene expression QTL mapping and phenotypic spectrum analysis to uncover gene regulatory relationships. Mamm. Genome 17, 575–583 (2006).

    Article  CAS  Google Scholar 

  18. Chesler, E.J., Lu, L., Wang, J., Williams, R.W. & Manly, K.F. WebQTL: rapid exploratory analysis of gene expression and genetic networks for brain and behavior. Nat. Neurosci. 7, 485–486 (2004).

    Article  CAS  Google Scholar 

  19. Petretto, E. et al. Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet. 2, e172 (2006).

    Article  Google Scholar 

  20. Schadt, E.E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  Google Scholar 

  21. Rain, J.C. et al. The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–215 (2001).

    Article  CAS  Google Scholar 

  22. Parrish, J.R. et al. A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol. 8, R130 (2007).

    Article  Google Scholar 

  23. LaCount, D.J. et al. A protein interaction network of the malaria parasite Plasmodium falciparum. Nature 438, 103–107 (2005).

    Article  CAS  Google Scholar 

  24. Uetz, P. et al. Herpesviral protein networks and their interaction with the human proteome. Science 311, 239–242 (2006).

    Article  CAS  Google Scholar 

  25. von Brunn, A. et al. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS ONE 2, e459 (2007).

    Article  Google Scholar 

  26. Lander, E.S. & Waterman, M.S. Genomic mapping by fingerprinting random clones: a mathematical analysis. Genomics 2, 231–239 (1988).

    Article  CAS  Google Scholar 

  27. Weber, J.L. & Myers, E.W. Human whole-genome shotgun sequencing. Genome Res. 7, 401–409 (1997).

    Article  CAS  Google Scholar 

  28. von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002).

    Article  CAS  Google Scholar 

  29. Hart, G.T., Ramani, A.K. & Marcotte, E.M. How complete are current yeast and human protein-interaction networks? Genome Biol. 7, 120 (2006).

    Article  Google Scholar 

  30. Lappe, M. & Holm, L. Unraveling protein interaction networks with near-optimal efficiency. Nat. Biotechnol. 22, 98–103 (2004).

    Article  CAS  Google Scholar 

  31. Cusick, M.E., Klitgord, N., Vidal, M. & Hill, D.E. Interactome: gateway into systems biology. Hum. Mol. Genet. 14 (special issue 2), R171–R181 (2005).

    Article  CAS  Google Scholar 

  32. Kocher, T. & Superti-Furga, G. Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat. Methods 4, 807–815 (2007).

    Article  Google Scholar 

  33. Parrish, J.R., Gulyas, K.D. & Finley, R.L. Jr. Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotechnol. 17, 387–393 (2006).

    Article  CAS  Google Scholar 

  34. Deane, C.M., Salwinski, L., Xenarios, I. & Eisenberg, D. Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol. Cell. Proteomics 1, 349–356 (2002).

    Article  CAS  Google Scholar 

  35. Stanyon, C.A. et al. A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol. 5, R96 (2004).

    Article  Google Scholar 

  36. Adams, M.D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    Article  Google Scholar 

  37. Zhong, J., Zhang, H., Stanyon, C.A., Tromp, G. & Finley, R.L. Jr. A strategy for constructing large protein interaction maps using the yeast two-hybrid system: regulated expression arrays and two-phase mating. Genome Res. 13, 2691–2699 (2003).

    Article  CAS  Google Scholar 

  38. Sharan, R. et al. Conserved patterns of protein interaction in multiple species. Proc. Natl. Acad. Sci. USA 102, 1974–1979 (2005).

    Article  CAS  Google Scholar 

  39. Matthews, L.R. et al. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs”. Genome Res. 11, 2120–2126 (2001).

    Article  CAS  Google Scholar 

  40. Boulton, S.J. et al. Combined functional genomic maps of the C. elegans DNA damage response. Science 295, 127–131 (2002).

    Article  CAS  Google Scholar 

  41. Ben-Hur, A. & Noble, W.S. Kernel methods for predicting protein-protein interactions. Bioinformatics 21 Suppl 1, i38–i46 (2005).

    Article  CAS  Google Scholar 

  42. Jansen, R. et al. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science 302, 449–453 (2003).

    Article  CAS  Google Scholar 

  43. Lee, I., Date, S.V., Adai, A.T. & Marcotte, E.M. A probabilistic functional network of yeast genes. Science 306, 1555–1558 (2004).

    Article  CAS  Google Scholar 

  44. Lu, L.J., Xia, Y., Paccanaro, A., Yu, H. & Gerstein, M. Assessing the limits of genomic data integration for predicting protein networks. Genome Res. 15, 945–953 (2005).

    Article  CAS  Google Scholar 

  45. von Mering, C. et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258–261 (2003).

    Article  CAS  Google Scholar 

  46. Yu, H., Paccanaro, A., Trifonov, V. & Gerstein, M. Predicting interactions in protein networks by completing defective cliques. Bioinformatics 22, 823–829 (2006).

    Article  CAS  Google Scholar 

  47. Finley, R.L. Jr & Brent, R. Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc. Natl. Acad. Sci. USA 91, 12980–12984 (1994).

    Article  CAS  Google Scholar 

  48. Kerrien, S. et al. IntAct–open source resource for molecular interaction data. Nucleic Acids Res. 35, D561–D565 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Bandyopadhyay for critical reading of the manuscript, I. Bronner, K. Gulyas, B. Mangiola and H. Zhang for expert technical assistance with the two-hybrid assays, and R. Karp and R. Sharan for discussions of earlier versions of this work. This work was supported by US National Institutes of Health grants RR018627, GM070743 and HG001536.

Author information

Authors and Affiliations

Authors

Contributions

A.S.S. and T.I. formulated the probabilistic model and performed the simulations. J.Y., K.R.G. and R.L.F. generated all new reported Y2H data. A.S.S., R.L.F. and T.I. wrote the paper.

Corresponding author

Correspondence to Trey Ideker.

Supplementary information

Supplementary Text and Figures1

Supplementary Figure 1, Supplementary Tables 1–2, Supplementary Methods (PDF 525 kb)

Supplementary Data

Results from protein-protein interaction predictions in Drosophila. (XLS 575 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, A., Yu, J., Gardenour, K. et al. Cost-effective strategies for completing the interactome. Nat Methods 6, 55–61 (2009). https://doi.org/10.1038/nmeth.1283

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing