Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter

Abstract

DNA-binding domains with predetermined sequence specificity are engineered by selection of zinc finger modules using phage display, allowing the construction of customized transcription factors. Despite remarkable progress in this field, the available protein-engineering methods are deficient in many respects, thus hampering the applicability of the technique. Here we present a rapid and convenient method that can be used to design zinc finger proteins against a variety of DNA-binding sites. This is based on a pair of pre-made zinc finger phage-display libraries, which are used in parallel to select two DNA-binding domains each of which recognizes given 5 base pair sequences, and whose products are recombined to produce a single protein that recognizes a composite (9 base pair) site of predefined sequence. Engineering using this system can be completed in less than two weeks and yields proteins that bind sequence-specifically to DNA with Kd values in the nanomolar range. To illustrate the technique, we have selected seven different proteins to bind various regions of the human immunodeficiency virus 1 (HIV-1) promoter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the protein engineering strategy.
Figure 2: Composition of the “bipartite” library.
Figure 3: Matrix specificity assay for seven zinc finger DNA-binding domains designed to bind sequences in the HIV-1 promoter.
Figure 4: Gel shift assays to determine the apparent equilibrium dissociation constants (Kd values) of three engineered zinc finger peptides.
Figure 5: Matrix sequence-discrimination assay for three-zinc finger peptides generated using three regions of the HIV-1 LTR.
Figure 6: Construction of a gene cassette coding for the zinc finger phage-display libraries used in this study.

Similar content being viewed by others

References

  1. Choo, Y., Sanchez-Garcia, I. & Klug, A. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372, 642–645 (1994).

    Article  CAS  Google Scholar 

  2. Greisman, H.A. & Pabo, C.O. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275, 657–661 (1997).

    Article  CAS  Google Scholar 

  3. Klug, A. & Rhodes, D. 'Zinc fingers': a novel protein motif for nucleic acid recognition. Trends Biochem. Sci. 12, 464–469 (1987).

    Article  CAS  Google Scholar 

  4. Choo, Y. & Klug, A. Designing DNA-binding proteins on the surface of filamentous phage. Curr. Opin. Biotechnol. 6, 431–436 (1995).

    Article  CAS  Google Scholar 

  5. Miller, J., McLachlan, A.D. & Klug, A. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J. 4, 1609–1614 (1985).

    Article  CAS  Google Scholar 

  6. Pavletich, N.P. & Pabo, C.O. Zinc finger–DNA recognition: crystal structure of a Zif268–DNA complex at 2.1 Å. Science 252, 809–817 (1991).

    Article  CAS  Google Scholar 

  7. Rebar, E.J. & Pabo, C.O. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263, 671–673 (1994).

    Article  CAS  Google Scholar 

  8. Jamieson, A.C., Kim, S.-H. & Wells, J.A. In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33, 5689–5695 (1994).

    Article  CAS  Google Scholar 

  9. Choo, Y. & Klug, A. Toward a code for the interactions of zinc fingers with DNA: selection of randomised zinc fingers displayed on phage. Proc. Natl. Acad. Sci. USA 91, 11163–11167 (1994).

    Article  CAS  Google Scholar 

  10. Wu, H., Yang, W.-P. & Barbas, C. F. Building zinc fingers by selection: toward a therapeutic application. Proc. Natl. Acad. Sci. USA 92, 344–348 (1995).

    Article  CAS  Google Scholar 

  11. Isalan, M., Klug, A. & Choo, Y. Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry 37, 12026–12033 (1998).

    Article  CAS  Google Scholar 

  12. Choo, Y. Recognition of DNA methylation by zinc fingers. Nat. Struct. Biol. 5, 264–265 (1998).

    Article  CAS  Google Scholar 

  13. Segal, D.J., Dreier, B., Beerli, R.R. & Barbas, C.F. Toward controlling gene expression at will: selection and design of zinc finger domains recognising each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763 (1999).

    Article  CAS  Google Scholar 

  14. Dreier, B., Segal, D.J. & Barbas, C.F. Insights into the molecular recognition of the 5′-GNN-3′ family of DNA sequences by zinc finger domains. J. Mol. Biol. 303, 489–502 (2000).

    Article  CAS  Google Scholar 

  15. Isalan, M. & Choo, Y. Engineered zinc finger proteins that recognise DNA modification by HaeIII and HhaI methyltransferase enzymes. J. Mol. Biol. 295, 471–477 (2000).

    Article  CAS  Google Scholar 

  16. Beerli, R.R., Dreier, B. & Barbas, C.F. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

    Article  CAS  Google Scholar 

  17. Choo, Y. & Isalan, M.D. Advances in zinc finger engineering. Curr. Opin. Struct. Biol. 10, 411–416 (2000).

    Article  CAS  Google Scholar 

  18. Wolfe, S.A., Greisman, H.A., Ramm, E.I. & Pabo, C.O. Analysis of zinc fingers optimised via phage display: evaluating the utility of a recognition code. J. Mol. Biol. 285, 1917–1934 (1999).

    Article  CAS  Google Scholar 

  19. Isalan, M., Choo, Y. & Klug, A. Synergy between adjacent zinc fingers in sequence-specific DNA recognition. Proc. Natl. Acad. Sci. USA 94, 5617–5621 (1997).

    Article  CAS  Google Scholar 

  20. Christy, B.A., Lau, L.F. & Nathans, D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with “zinc finger” sequences. Proc. Natl. Acad. Sci. USA 85, 7857–7861 (1988).

    Article  CAS  Google Scholar 

  21. Choo, Y. & Klug, A. Selection of DNA binding sites for zinc fingers using rationally randomised DNA reveals coded interactions. Proc. Natl. Acad. Sci. USA 91, 11168–11172 (1994).

    Article  CAS  Google Scholar 

  22. Thiesen, H.J. From repression domains to designer zinc finger proteins: a novel strategy of cellular immunisation against HIV. Gene Expr. 5, 229–243 (1996).

    CAS  PubMed  Google Scholar 

  23. Wu, H., Yang, W.-P. & Barbas, C.F. Building zinc fingers by selection: toward a therapeutic application. Proc. Natl. Acad. Sci. USA 92, 344–348 (1995).

    Article  CAS  Google Scholar 

  24. Liu, Q., Segal, D.J., Ghiara, J.B. & Barbas, C.F. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94, 5525–5530 (1997).

    Article  CAS  Google Scholar 

  25. Kim, J.S. & Pabo, C.O. Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constants. Proc. Natl. Acad. Sci. USA 95, 2812–2817 (1998).

    Article  CAS  Google Scholar 

  26. Moore, M., Choo, Y. & Klug, A. Design of polyzinc finger peptides with structured linkers. Proc. Natl. Acad. Sci. USA 98, 1432–1436 (2001).

    Article  CAS  Google Scholar 

  27. Moore, M., Klug, A. & Choo, Y. Improved DNA-binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc. Natl. Acad. Sci. USA 98, 1437–1441 (2001).

    Article  CAS  Google Scholar 

  28. Choo, Y. & Klug, A. Physical basis of a protein–DNA recognition code. Curr. Opin. Struct. Biol. 7, 117–125 (1997).

    Article  CAS  Google Scholar 

  29. Kang, J.S. & Kim, J.S. Zinc finger proteins as designer transcription factors. J. Biol. Chem. 275, 8742–8748 (2000).

    Article  CAS  Google Scholar 

  30. Liu, P.Q. et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 276, 11323–11334 (2001).

    Article  CAS  Google Scholar 

  31. Zhang, L. et al. Synthetic zinc finger transcription factor action at an endogenous chromosomal site. Activation of the human erythropoietin gene. J. Biol. Chem. 275, 33850–33860 (2000).

    Article  CAS  Google Scholar 

  32. Elrod-Erickson, M., Rould, M.A., Nekludova, L. & Pabo, C.O. Zif268 protein–DNA complex refined at 1.6A: a model system for understanding zinc finger interactions. Structure 4, 1171–1180 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council, UK..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen Choo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isalan, M., Klug, A. & Choo, Y. A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat Biotechnol 19, 656–660 (2001). https://doi.org/10.1038/90264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/90264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing