Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Deconstructing DiGeorge syndrome

DiGeorge syndrome is the most frequent contiguous-gene deletion syndrome in humans, occurring with an estimated frequency of 1 in 4,000 live births. Extensive microdeletion mapping in a large number of affected individuals has failed to identify a single gene or a combination of genes commonly deleted. Two new studies implicate the transcription factor TBX1 as a key candidate gene for the aortic arch malformations seen in DGS, and are consistent with the concept that some congenital diseases are caused by a reduced dosage of genes that control development. However, a similar study focusing on the adaptor protein Crkol shows that other genes within the deleted regions might affect the same developmental pathways.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Jerome, L.A. & Papaioannou, V.E. Nature Genet. 27, 286–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lindsay, E.A. et al. Nature 409, (in press) (2001).

  3. Guris, D.L., Fantes, J., Tara, D., Druker, B.J. & Imamoto, A. Nature Genet. 27, 293–298 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. DiGeorge, A.M. Birth Defects Orig. Art. Ser. IV, 116–121 (1968).

    Google Scholar 

  5. Emanuel, B.S., Budarf, M.L. & Scambler P.J. Heart Development (eds. Harvey, R.P. & Rosenthal, N.) 463–478 (Academic, New York, 1998).

  6. Moerman, P., Goddeeris, P., Lauwerijns, J. & Van der Hauwaert, L.G. Br. Heart J. 44, 452–459 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farrell, M.J. et al. Circ. Res. 84, 127–35 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Yamagishi, H., Garg, V., Matsuoka, R., Thomas, T. & Srivastava, D. Science 283, 1158–1161 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Lindsay, E.A. et al. Nature 401, 379–383 (1999).

    CAS  PubMed  Google Scholar 

  10. Wilkie, A.O.M. et al. Nature Genet. 24, 391–395 (2000).

    Article  Google Scholar 

  11. Biben, C. et al. Circ. Res. 87, 888–895 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Peters, H., Neubuser, A., Kratochwil, K. & Balling, R. Genes Dev. 12, 2735–2747 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bamshad, M. et al. Nature Genet. 16, 311–315 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Basson, C.T. et al. Nature Genet. 15, 30–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Chieffo, C. et al. Genomics 43, 267–277 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Kimber, W.L. et al. Hum. Mol. Genet. 8, 2229–2237 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Merscher, S. et al. Cell 104, 1–20 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Note added in proof: An independent report by Merscher et al.17on the involvement of TBX1 in DGS is in press at Cell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schinke, M., Izumo, S. Deconstructing DiGeorge syndrome. Nat Genet 27, 238–240 (2001). https://doi.org/10.1038/85784

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/85784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing