Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local endostatin treatment of gliomas administered by microencapsulated producer cells

Abstract

We describe a technique for the treatment of malignant brain tumors based on local delivery of the anti-angiogenic protein endostatin from genetically engineered cells encapsulated in ultrapure sodium alginate. Alginate consists of L-guluronic and D-mannuronic acid, which in the presence of divalent cations forms an extended gel network, in which cells reside and remain immunoisolated, when implanted into the rat brain. Here, we show that endostatin-transfected cells encapsulated in alginate maintain endostatin secretion for at least four months after intracerebral implantation in rats. During the implantation period 70% of the encapsulated cells remained viable, as opposed to 85% in in vitro-cultured capsules. Rats that received transplants of BT4C glioma cells, together with endostatin-producing capsules (0.2 μg/ml per capsule), survived 84% longer than the controls. The endostatin released from the capsules led to an induction of apoptosis, hypoxia, and large necrotic avascular areas within 77% of the treated tumors, whereas all the controls were negative. The encapsulation technique may be used for many different cell lines engineered to potentially interfere with the complex microenvironment in which tumor and normal cells reside. The present work may thus provide the basis for new therapeutic approaches toward brain tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Confocal image of bioreactors viewed by Hoffman optics.
Figure 2: Endostatin release from the bioreactors.
Figure 3: Local endostatin treatment results in prolonged survival of animals bearing intracranial tumors.
Figure 4: Encapsulated endostatin-producing 293 cells survive for several months in vivo and induce large necrotic areas in the treated tumors.
Figure 5: Biological effects of local endostatin treatment on intracranial tumors.
Figure 6: Endostatin induces apoptosis in tumor cells.

Similar content being viewed by others

References

  1. Scherer, H.J. Structural development in gliomas. Am. J. Cancer 34 , 333–351 (1938).

    Google Scholar 

  2. Plate, K.H. & Risau, W. Angiogenesis in malignant gliomas. Glia 15, 339–347 (1995).

    Article  CAS  Google Scholar 

  3. Cao, R. et al. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis. Proc. Natl. Acad. Sci. USA 96, 5728–5733 ( 1999).

    Article  CAS  Google Scholar 

  4. Chung, J., Gao, A.G. & Frazier, W.A. Thrombospondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3. J. Biol. Chem. 272, 14740–14746 ( 1997).

    Article  CAS  Google Scholar 

  5. O'Reilly, M.S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  Google Scholar 

  6. Chen. Q.R., Kumar, D., Stass, S.A. & Mixson, A.J. Liposomes complexed to plasmids encoding angiostatin and endostatin inhibit breast cancer in nude mice. Cancer Res. 59, 3308– 3312 (1999).

    CAS  PubMed  Google Scholar 

  7. Dhanabal, M. et al. Endostatin: yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res. 59, 189–197 (1999).

    CAS  PubMed  Google Scholar 

  8. Blezinger, P. et al. Systemic inhibition of tumor growth and tumor metastases by intramuscular administration of the endostatin gene. Nat. Biotechnol. 17, 343–348 ( 1999).

    Article  CAS  Google Scholar 

  9. Kleihues, P., Burger, P.C., Plate, K.H., Ohgaki, H. & Cavanee, W.K. Glioblastoma. In Pathology and genetics of tumours of the central nervous system. (eds Kleihues, P. & Cavanee, W.K.) 16–24 (The International Agency for Research on Cancer, Lyons, France; 1997).

    Google Scholar 

  10. Olivi, A., DiMeco, F., Bohan, E. & Brem H. Developing new methods for the treatment of malignant brain tumours: local delivery of anti-neoplastic agents using biodegradable polymers. Forum (Genova) 10, 152–165 (2000).

    CAS  Google Scholar 

  11. Hottinger, A.F. & Aebischer. P. Treatment of diseases of the central nervous system using encapsulated cells. Adv. Tech. Stand. Neurosurg. 25, 3– 20 (1999).

    Article  CAS  Google Scholar 

  12. Lang, M.S., Hovenkamp, E., Savelkoul, H.F.J., Knegt, P. & van Ewijk, W. Immunotherapy with monoclonal antibodies directed against the immunosuppressive domain of p15E inhibits tumour growth. Clin. Exp. Immunol. 102, 468–475 (1995).

    Article  CAS  Google Scholar 

  13. Lim, F. & Sun, A.M. Microencapsulated islets as bioartificial endocrine pancreas. Science 210, 908– 910 (1980).

    Article  CAS  Google Scholar 

  14. Martinsen, A., Skjåk-Bræk, G. & Smidsrød, O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 33, 79– 89 (1989).

    Article  CAS  Google Scholar 

  15. Martinsen, A., Storrø, I. & Skjåk-Bræk, G. Alginate as immobilization material: III. Diffusional properties. Biotechnol. Bioeng. 39, 186–194 (1992).

    Article  CAS  Google Scholar 

  16. Read, T-A. et al. Cells encapsulated in alginate: a potential system for delivery of recombinant proteins to malignant brain tumours. Int. J. Dev. Neurosci. 17, 653–663 ( 1999).

    Article  CAS  Google Scholar 

  17. Krewson, C.E. & Saltzman, W.M. Transport and elimination of recombinant human NGF during long-term delivery to the brain. Brain Res. 15, 169–181 ( 1996).

    Article  Google Scholar 

  18. Mahoney, M.J. & Saltzman, W.M. Millimeter-scale positioning of a nerve-growth-factor source and biological activity in the brain. Proc. Natl. Acad. Sci. USA 13, 4536 –4539 (1999).

    Article  Google Scholar 

  19. Thorsen, F., Read, T-A., Lund-Johansen, M, Tyssnes, B.B. & Bjerkvig, R. Alginate encapsulated producer cells: a potential new approach to the treatment of malignant brain tumours. Cell Transplant. (December 2000).

  20. Ross, C.J., Ralph, M. & Chang, P.L. Delivery of recombinant gene products to the central nervous system with nonautologous cells in alginate microcapsules. Hum. Gene Ther. 10, 49–59 ( 1999).

    Article  CAS  Google Scholar 

  21. Boucher, Y., Salehi, H., Witwer, B., Harsh, G.R & Jain, R.K. Interstitial fluid pressure in intracranial tumours in patients and in rodents. Br. J. Cancer 75, 829–836 (1997).

    Article  CAS  Google Scholar 

  22. Steen, R.G., Kromhout-Schiro, S. & Graham, M.M. Relationship of perfusion to edema in the 9L glioma . J. Neurooncol. 16, 81– 87 (1993).

    Article  CAS  Google Scholar 

  23. Dhanabal, M. et al. Endostatin induces endothelial cell apoptosis. J. Biol. Chem. 274, 11721–11726 (1999).

    Article  CAS  Google Scholar 

  24. Chang, Z., Choon, A. & Friedl, A. Endostatin binds to blood vessels in situ independent of heparan sulfate and does not compete for fibroblast growth factor-2 binding . Am. J. Pathol. 155, 71– 76 (1999).

    Article  CAS  Google Scholar 

  25. Yamaguchi, N. et al. Endostatin inhibits VEGF-induced endothelial cell migration and tumour growth independently of zinc binding. EMBO J. 18, 4414–4423 (1999).

    Article  CAS  Google Scholar 

  26. Yao, K.S., Clayton, M. & O'Dwyer, P. Apoptosis in human adenocarcinoma HT29 cells induced by exposure to hypoxia. J. Natl. Cancer Inst. 87, 117–122 (1995).

    Article  CAS  Google Scholar 

  27. Tohma, Y. et al. Necrogenesis and Fas/APO-1 (CD95) expression in primary (de novo) and secondary glioblastomas. Neuropathol. Exp. Neurol. 57, 239–245 (1998).

    Article  CAS  Google Scholar 

  28. Plate, K.H., Breier, G., Weich, H.A. & Risau, W. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359, 845–848 (1992).

    Article  CAS  Google Scholar 

  29. Goldbrunner, R.H., Bernstein, J.J. & Tonn, J.C. Cell-extracellular matrix interaction in glioma invasion. Acta Neurochir. (Wien) 141, 295–305 (1999).

    Article  CAS  Google Scholar 

  30. Lichtenbeld, H.C., Ferarra, N., Jain, R.K. & Munn, L.L. Effect of local anti-VEGF antibody treatment on tumor microvessel permeability . Microvasc. Res. 57, 357– 362 (1999).

    Article  CAS  Google Scholar 

  31. Laerum, O.D. & Rajewsky, M.F. Neoplastic transformation of fetal rat brain cells in culture after exposure to ethylnitrosourea in vivo. J. Natl. Cancer Inst. 55, 1177– 1187 (1975).

    Article  CAS  Google Scholar 

  32. Blake, M.S., Johnston, K.H., Russell-Jones, G.J. & Gotschlich, E.C. A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on Western blots. Anal. Biochem. 136, 175–179 (1984).

    Article  CAS  Google Scholar 

  33. Sasaki, T. et al. Structure, function and tissue forms of the C-terminal globular domain of collagen XVIII containing the angiogenesis inhibitor endostatin . EMBO J. 17, 4249–4256 (1998).

    Article  CAS  Google Scholar 

  34. Takeoka, T., Shinohara, Y., Furumi, K. & Mori, K. Characteristic protein fractions of cerebrospinal fluid disc electrophoretic analysis. Brain Res. 29, 147– 150 (1980).

    Article  Google Scholar 

  35. Visted, T. et al. acZ-neoR transfected glioma cells in syngeneic rats: growth pattern and characterization of the host immune response against cells transplanted inside and outside the CNS. Int. J. Cancer 15, 228–235 (2000).

    Article  Google Scholar 

  36. Walker, G.R., Feather, K.D., Davis, P.D. & Hines, K.K. SuperSignalMT CL-HPR: a new enhanced chemiluminescent substrate for the development of horseradish peroxidase label in western blotting applications . J. NIH Res. 7, 76 ( 1995).

    Google Scholar 

  37. Druckrey, H. Genotypes and phenotypes of ten inbred strains of BD-rats. Arzneimittelforschung 21, 1274–1278 ( 1971).

    CAS  PubMed  Google Scholar 

  38. Varia, M.A. et al. Pimonidazole: a novel hypoxia marker for complementary study of tumour hypoxia and cell proliferation in cervical carcinoma. Gynecol. Oncol. 71, 270–277 (1998).

    Article  CAS  Google Scholar 

  39. Mahesparan, R. et al. Extracellular matrix-induced cell migration from glioblastoma specimens in vitro. Acta Neuropathol. 97, 231–239 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Norwegian Cancer Society, the National Gene Therapy Program, the Norwegian Research Counsel and Innovest, and the University of Bergen for financial support toward this study. Furthermore, we thank Bodil Hansen, Tove Drange Johannsen, and Tore Jacob Raa for excellent technical assistance. Finally we thank Dr. Rupert Timpl at the Max-Planck institute, Martinsried, Germany for supplying the endostatin antiserum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracy-Ann Read.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Read, TA., Sorensen, D., Mahesparan, R. et al. Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 19, 29–34 (2001). https://doi.org/10.1038/83471

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83471

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing