Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds

Abstract

Fast synaptic transmission depends on the selective ionic permeability of transmitter-gated ion channels. Here we show changes in the ion selectivity of neuronal P2X transmitter-gated cation channels as a function of time (on the order of seconds) and previous ATP exposure. Heterologously expressed P2X2, P2X2/P2X3 and P2X4 channels as well as native neuronal P2X channels possess various combinations of mono- or biphasic responses and permeability changes, measured by NMDG+ and fluorescent dye. Furthermore, in P2X4 receptors, this ability to alter ion selectivity can be increased or decreased by altering an amino-acid residue thought to line the ion permeation pathway, identifying a region that governs this activity-dependent change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity-dependent increase in brain P2X4, but not P2X2 or P2X3 channel currents.
Figure 2: Properties of I1 and I2.
Figure 3: Activity-dependent increases in cation permeability of P2X4 channels.
Figure 4: Activation of neuronal P2X2 and P2X4 channels evokes YO-PRO-1 uptake.
Figure 5: ATP-evoked YO-PRO-1 uptake into neurons.
Figure 6: Mutant P2X4 channels.
Figure 7: Channel-gate mutations increase or decrease I2 amplitude.
Figure 8: Channel-gate mutants of P2X4 have high and low cation selectivity.

Similar content being viewed by others

References

  1. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24, 509–581, (1972).

    CAS  PubMed  Google Scholar 

  2. Evans, R. J., Derkach, V. & Surprenant, A. ATP mediates fast synaptic transmission in mammalian neurons. Nature 357, 503– 505 (1992).

    Article  CAS  Google Scholar 

  3. Edwards, F. A., Gibb, A. & Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144– 146 (1992).

    Article  CAS  Google Scholar 

  4. Galligan, J. J. & Bertrand, P. P. ATP mediates fast synaptic potentials in enteric neurons. J. Neurosci. 14, 7563–7571 (1994).

    Article  CAS  Google Scholar 

  5. Bardoni, R., Goldstein, P. A., Lee, J., Gu, J. G. & MacDermott, A. B. ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J. Neurosci. 17, 5297–5304 (1997).

    Article  CAS  Google Scholar 

  6. Nieber, K., Poelchen, W. & Illes, P. Role of ATP in fast excitatory synaptic potentials in locus coeruleus neurons of the rat. Br. J. Pharmacol. 122, 423–430 (1997).

    Article  CAS  Google Scholar 

  7. Surprenant, A., Buell, G. & North, R. A. P2X receptors bring new structure to ligand-gated ion channels. Trends Neurosci. 18, 224– 229 (1995).

    Article  CAS  Google Scholar 

  8. Gu, J. G. & MacDermott, A. B. Activation of ATP P2X receptors elicits glutamate release from sensory neurone synapses. Nature 389, 749–753 (1997).

    Article  CAS  Google Scholar 

  9. Khakh, B. S. & Henderson, G. ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol. Pharmacol. 54, 372–378 (1998).

    Article  CAS  Google Scholar 

  10. Wieraszko, A., Goldsmith, G. & Seyfried, T. N. Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res. 485, 244–250 (1989).

    Article  CAS  Google Scholar 

  11. Cunha, R. A., Vizi, E. S., Ribeiro, J. A. & Sebastiao, A. M. Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. J. Neurochem. 67, 2180– 2187 (1996).

    Article  CAS  Google Scholar 

  12. Terrian, D. M., Hernandez, P. G., Rea, M. A. & Peters, R. I. ATP release, adenosine formation, and modulation of dynorphin and glutamic acid release by adenosine analogues in rat hippocampal mossy fiber synaptosomes. J. Neurochem. 53, 1390– 1399 (1989).

    Article  CAS  Google Scholar 

  13. Lutz, P. L. & Kabler, S. Release of adenosine and ATP in the brain of freshwater turtle (Trachemys scripta) during long term anoxia. Brain Res. 769, 281–286 (1997).

    Article  CAS  Google Scholar 

  14. Braun, N., Zhu, Y., Krieglstein, J., Culmsee, C. & Zimmermann, H. Upregulation of the enzyme chain hydrolysing extracellular ATP after transient forebrain ischaemia in the rat. J. Neurosci. 18, 4891–4900 (1998).

    Article  CAS  Google Scholar 

  15. North, R. A. Families of ion channels with two hydrophobic segments. Curr. Opin. Cell Biol. 8, 474–483 (1996).

    Article  CAS  Google Scholar 

  16. Green, T., Heinemann, S. F. & Gusella, J. F. Molecular neurobiology and genetics: investigation of neural function and dysfunction. Neuron 20, 427–444 (1998).

    Article  CAS  Google Scholar 

  17. Kidd, E. J. et al. Localisation of P2X purinoceptor transcripts in the rat nervous system. Mol. Pharmacol. 48, 569– 573 (1995).

    CAS  PubMed  Google Scholar 

  18. Vulchanova, L. et al. Differential distribution of 2 ATP-gated ion channels (P-2X receptors) determined by immunocytochemistry. Proc. Natl. Acad. Sci. USA 93, 8063–8067 (1996).

    Article  CAS  Google Scholar 

  19. Vulchanova, L. et al. Immunohistochemical study of the P2X2 and P2X3 receptor subunits in rat and monkey sensory neurons and their central terminals. Neuropharmacology 36, 1229–1242 (1997).

    Article  CAS  Google Scholar 

  20. Collo, G. et al. Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J. Neurosci. 16, 2495–2507 (1996).

    Article  CAS  Google Scholar 

  21. Le, K. T. et al. Sensory presynaptic and widespread somatodendritic immunolocalisation of central ionotropic P2X ATP receptors. Neuroscience 83, 177–190 (1998).

    Article  CAS  Google Scholar 

  22. Buell, G., Lewis, C., Collo, G., North, R. A. & Surprenant, A. An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J. 15, 55– 62 (1996).

    Article  CAS  Google Scholar 

  23. Seguela, P., Haghighi, A., Soghomonian, J. J. & Cooper, E. A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J. Neurosci. 16, 448– 455 (1996).

    Article  CAS  Google Scholar 

  24. Soto, F. et al. P2X4: An ATP-activated ionotropic receptor cloned from rat brain. Proc. Natl. Acad. Sci. USA 93, 3684– 3688 (1996).

    Article  CAS  Google Scholar 

  25. Le, K. T., Babinski, K. & Séguéla, P. Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J. Neurosci. 18, 7152–7159 (1998).

    Article  CAS  Google Scholar 

  26. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1992).

    Google Scholar 

  27. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996).

    Article  CAS  Google Scholar 

  28. Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994).

    Article  CAS  Google Scholar 

  29. Chen, C. C. et al. A P2X purinoceptor expressed by a subset of sensory neurons. Nature 377, 428–431 (1995).

    Article  CAS  Google Scholar 

  30. Lewis, C. et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377, 432–435 (1995).

    Article  CAS  Google Scholar 

  31. Cook, S. P., Vulchanova, L., Hargreaves, K. M., Elde, R. & McCleskey, E. W. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387, 505–508 (1997).

    Article  CAS  Google Scholar 

  32. Nicholson, C., ten Bruggencate, G., Stockle, H. & Steinberg, R. Ca2+ and potassium changes in extracellular microenvironment of cat cerebellar cortex. J. Neurophysiol. 41, 1026–1039 (1978).

    Article  CAS  Google Scholar 

  33. Krnjevic, K., Morris, M. E. & Reiffenstein, R. J. Changes in extracellular Ca2+ and K+ activity accompanying hippocampal discharges. Can. J. Physiol. Pharmacol. 58, 579– 582 (1980).

    Article  CAS  Google Scholar 

  34. Krnjevic, K., Morris, M. E. & Reiffenstein, R. J. Stimulation-evoked changes in extracellular K+ and Ca2+ in pyramidal layers of the rat's hippocampus. Can. J. Physiol. Pharmacol. 60, 1643– 1657 (1982).

    Article  CAS  Google Scholar 

  35. Krnjevic, K., Morris, M. E., Reiffenstein, R. J. & Ropert, N. Depth distribution and mechanism of changes in extracellular K+ and Ca2+ concentrations in the hippocampus. Can. J. Physiol. Pharmacol. 60, 1658–1671 (1982).

    Article  CAS  Google Scholar 

  36. Pumain, R. & Heinemann, U. Stimulus- and amino acid-induced Ca2+ and potassium changes in rat neocortex. J. Neurophysiol. 53, 1–16 (1985).

    Article  CAS  Google Scholar 

  37. Morris, M. E. & Trippenbach, T. Changes in extracellular [K+] and [Ca2+] induced by anoxia in neonatal rabbit medulla. Am. J. Physiol. 264, R761– 769 (1993).

    Article  CAS  Google Scholar 

  38. Evans, R. J. et al. Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J. Physiol. (Lond.) 497, 413–422 (1996).

    Article  CAS  Google Scholar 

  39. Torres, G. E., Egan, T. M. & Voigt, M. M. Topological analysis of the ATP-gated ionotropic P2X2 receptor subunit. FEBS Lett. 425, 19–23 (1998).

    Article  CAS  Google Scholar 

  40. Newbolt, A. et al. Membrane topology of an ATP-gated ion channel (P2X receptor). J. Biol. Chem. 273, 15177– 15182 (1998).

    Article  CAS  Google Scholar 

  41. Rassendren, F., Buell, G., Newbolt, A., North, R. A. & Surprenant, A. Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J. 16, 3446–3454 (1997).

    Article  CAS  Google Scholar 

  42. Egan, T. M., Haines, W. R. & Voigt, M. M. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J. Neurosci. 18, 2350– 2359 (1998).

    Article  CAS  Google Scholar 

  43. Collo, G. et al. Tissue distribution of the P2X7 receptor. Neuropharmacology 36, 1277–1283 (1997).

    Article  CAS  Google Scholar 

  44. MacKinnon, R. Pore loops: an emerging theme in ion channel structure. Neuron 14, 889–892 (1995).

    Article  CAS  Google Scholar 

  45. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T. & Rees, D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282, 2220–2226 (1998).

    Article  CAS  Google Scholar 

  46. Lingueglia, E. et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglia. J. Biol. Chem. 272, 29778–29783 (1997).

    Article  CAS  Google Scholar 

  47. Starkus, J. G., Kuschel, L., Rayner, M. D. & Heinemann, S. H. Ion conduction through C-type inactivated Shaker channels. J. Gen. Physiol. 110, 539–550 (1997).

    Article  CAS  Google Scholar 

  48. Lester, H. A. The permeation pathway of neurotransmitter-gated ion channels. Annu. Rev. Biophys. Biomol. Struct. 21, 267– 292 (1992).

    Article  CAS  Google Scholar 

  49. Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).

    Article  CAS  Google Scholar 

  50. Quick, M. W. & Lester, H. A. in Ion Channels of Excitable Cells (ed. Narahashi, T) 261–279 (Academic, San Diego, 1994).

    Book  Google Scholar 

Download references

Acknowledgements

Thanks to I. Chessell (GlaxoWellcome, UK) for providing P2X cDNA clones. The authors are grateful to H. Li, S. McKinney and J. Sydes for assistance with preparation of oocytes and neurons and for advice on the YO-PRO-1 experiments, and to other members of the group for comments. This work was supported by the National Institutes of Health (NS-11756), a Wellcome Trust (UK) Prize Travelling Fellowship to B.S.K. and a Caltech Summer Undergraduate Research Fellowship to X.R.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljit S. Khakh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khakh, B., Bao, X., Labarca, C. et al. Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat Neurosci 2, 322–330 (1999). https://doi.org/10.1038/7233

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing