Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sonoluminescence temperatures during multi-bubble cavitation

Abstract

Acoustic cavitation—the formation and implosive collapse of bubbles—occurs when a liquid is exposed to intense sound. Cavitation can produce white noise, sonochemical reactions, erosion of hard materials, rupture of living cells and the emission of light, or sonoluminescence1,2. The concentration of energy during the collapse is enormous: the energy of an emitted photon can exceed the energy density of the sound field by about twelve orders of magnitude3, and it has long been predicted that the interior bubble temperature reaches thousands of degrees Kelvin during collapse. But experimental measurements4,5 of conditions inside cavitating bubbles are scarce, and there have been no studies of interior temperature as a function of experimental parameters. Here we use multi-bubble sonoluminescence from excited states of metal atoms as a spectroscopic probe of temperatures inside cavitating bubbles. The intense atomic emission allows us to change the properties of the gas–vapour mixture within the bubble, and thus vary the effective emission temperature for multi-bubble sonoluminescence from 5,100 to 2,300 K. We observe emission temperatures that are in accord with those expected from compressional heating during cavitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multi-bubble sonoluminescence (MBSL) emission from excited states of Cr atoms.
Figure 2: Effect of polyatomic gases on the observed emission temperatures from MBSL.
Figure 3: Observed emission temperatures versus gas-mixture polytropic ratios at 298 K.
Figure 4: Effect of solvent vapour pressure on the observed emission temperatures from MBSL.
Figure 5: Effect of dissolved noble gases on the observed emission temperatures from MBSL.

Similar content being viewed by others

References

  1. Suslick,K. S. & Crum,L. A. in Handbook of Acoustics (ed. Crocker, M. J.) 243–253 (Wiley-Interscience, New York, 1998).

    Google Scholar 

  2. Knapp,R. T., Daily,J. W. & Hammitt,F. G. Cavitation (McGraw-Hill, New York, 1970).

    Google Scholar 

  3. Barber,B. P. & Putterman,S. J. Observation of synchronous picosecond sonoluminescence. Nature 352, 318–320 (1991).

    Article  ADS  Google Scholar 

  4. Flint,E. B. & Suslick,K. S. The temperature of cavitation. Science 253, 1325–1326 (1991).

    Article  Google Scholar 

  5. Suslick,K. S., Hammerton,D. A. & Cline, R. E. Jr Sonochemical hot spot. J. Am. Chem. Soc. 108, 5641–5642 (1986).

    Article  CAS  Google Scholar 

  6. Suslick,K. S., Flint,E. B., Grinstaff,M. W. & Kemper,K. A. Sonoluminescence from metal carbonyls. J. Phys. Chem. 97, 3098–3099 (1993).

    Article  CAS  Google Scholar 

  7. Alkemande,C. T. J., Hollander,T., Snelleman,W. & Zeegers,P. J. T. Metal Vapours in Flames (Pergamon, New York, 1982).

    Google Scholar 

  8. Wiese,W. L., Fuhr,J. R. & Martin,G. A. Atomic transition probabilities: scandium through manganese. J. Phys. Chem. Ref. Data 17, 311–327 (1988).

    Google Scholar 

  9. Wiese,W. L., Fuhr,J. R. & Martin,G. A. Atomic transition probabilities: iron through nickel. J. Phys. Chem. Ref. Data 14, 13–67 (1988).

    Google Scholar 

  10. Whaling,W. & Brault,J. W. Comprehensive transition probabilities in molybdenum I. Phys. Scr. 38, 707–715 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Gaydon,A. G. The Spectroscopy of Flames 2nd edn (Wiley, New York, 1974).

    Book  Google Scholar 

  12. Cabannes,F. & Chapelle,J. in Reactions Under Plasma Conditions 1st edn Vol. 1 (ed. Venugopalan, M.) 367–470 (Wiley-Interscience, New York, 1971).

    Google Scholar 

  13. Reif,I., Fassel,V. A. & Kniseley,R. N. Spectroscopic flame measurements and their physical significance I: theoretical concepts. Spectrochim. Acta B 28, 105–123 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Jeffries,J. B., Copeland,R. A., Suslick,K. S. & Flint,E. B. Thermal equilibration during cavitation. Science 256, 248 (1992).

    Article  ADS  CAS  Google Scholar 

  15. Noltingk,B. E. & Neppiras,E. Cavitation produced by ultrasonics. Proc. Phys. Soc. B 63, 674–685 (1950).

    Article  ADS  Google Scholar 

  16. Kamath,V., Prosperetti,A. & Egolfopoulos,F. N. A theoretical study of sonoluminescence. J. Acoust. Soc. Am. 94, 248–260 (1993).

    Article  ADS  Google Scholar 

  17. Jarman,P. Measurements of sonoluminescence from pure liquids and some aqueous solutions. Proc. Phys. Soc. 73, 628–640 (1959).

    Article  ADS  CAS  Google Scholar 

  18. Flint,E. B. & Suslick,K. S. Sonoluminescence from nonaqueous liquids: emissions from small molecules. J. Am. Chem. Soc. 111, 6987–6992 (1989).

    Article  CAS  Google Scholar 

  19. Suslick,K. S. & Flint,E. B. Sonoluminescence of alkali metal salts. J. Phys. Chem. 95, 1484–1488 (1991).

    Article  Google Scholar 

  20. Suslick,K. S., Gawienowski,J. J., Schubert,P. F. & Wang,H. H. Alkane sonochemistry. J. Phys. Chem. 87, 2299–2301 (1983).

    Article  CAS  Google Scholar 

  21. Suslick,K. S., Gawienowski,J. W., Schubert,P. F. & Wang,H. H. Sonochemistry in non-aqueous liquids. Ultrasonics 22, 33–36 (1984).

    Article  CAS  Google Scholar 

  22. Yaws,C. L. Handbook of Vapor Pressures Vol. 3, 383 (Gulf, Houston, 1994).

    Google Scholar 

  23. Hickling,R. Effects of thermal conduction in sonoluminescence. J. Acoust. Soc. Am. 35, 967–974 (1963).

    Article  ADS  CAS  Google Scholar 

  24. Young,F. R. Sonoluminescence from water containing dissolved gases. J. Acoust. Soc. Am. 60, 100–104 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Yasui,K. J. Phys. Soc. Jpn 65, 2830–2840 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Suslick,K. S. & Flint,E. B. Sonoluminescence of non-aqueous liquids. Nature 330, 553–555 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Zel'dovich,Y. D. & Raizer,Y. P. Physics of Shock Waves and High Temperature Hydrodynamic Phenomenon 2nd edn (Academic, New York, 1966).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation, the US Department of Energy, and in part by the US Defence Advanced Research Projects Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Suslick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McNamara, W., Didenko, Y. & Suslick, K. Sonoluminescence temperatures during multi-bubble cavitation. Nature 401, 772–775 (1999). https://doi.org/10.1038/44536

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/44536

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing