Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct measurement of in situ methane quantities in a large gas-hydrate reservoir

Abstract

Certain gases can combine with water to form solids—gas hydrates—that are stable at high pressures and low temperatures1,2. Conditions appropriate for gas-hydrate formation exist in many marine sediments where there is a supply of methane. Seismic reflection profiles across continental margins indicate the frequent occurrence of gas hydrate within the upper few hundred metres of sea-floor sediments, overlying deeper zones containing bubbles of free gas3–9. If large volumes of methane are stored in these reservoirs, outgassing may play an important role during climate change10–12. Gas hydrates in oceanic sediments may in fact comprise the Earth's largest fossil-fuel reservoir2,13. But the amount of methane stored in gas-hydrate and free-gas zones is poorly constrained2–9,13–18. Here we report the direct measurement of in situ methane abundances stored as gas hydrate and free gas in a sediment sequence from the Blake ridge, western Atlantic Ocean. Our results indicate the presence of substantial quantities of methane (˜15 GT of carbon) stored as solid gas hydrate, with an equivalent or greater amount occurring as bubbles of free gas in the sediments below the hydrate zone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sloan, E. D. Clathrate Hydrates of Gases (Dekker, New York, 1990).

    Google Scholar 

  2. Kvenvolden, K. A. Rev. Geophys. 31, 173–187 (1993).

    Article  ADS  Google Scholar 

  3. Miller, J. J., Lee, M. W. & von Huene, R. Bull. Am. Assoc. Petrol. Geol. 75, 910–924 (1991).

    Google Scholar 

  4. Hyndman, R. D. & Spence, G. D. J. Geophys. Res. 97, 6683–6698 (1992).

    Article  ADS  Google Scholar 

  5. Singh, S. C., Minshull, T. A. & Spence, G. D. Science 260, 204–207 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Lee, M. W. et al. Mar. Petrol. Geol. 10, 493–506 (1993).

    Article  CAS  Google Scholar 

  7. Katzman, R., Holbrook, W. S. & Paull, C. K. J. Geophys. Res. 99, 17975–17995 (1994).

    Article  ADS  Google Scholar 

  8. Wood, W. T., Stoffa, P. L. & Shipley, T. H. J. Geophys. Res. 99, 9681–9695 (1994).

    Article  ADS  CAS  Google Scholar 

  9. Pecher, I. A., Minshull, T. A., Singh, S. C. & von Huene, R. Earth Planet. Sci. Lett. 139, 459–469 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Nisbet, E. G. Can. J. Earth Sci. 27, 148–157 (1990).

    Article  ADS  Google Scholar 

  11. Paull, C. K., Ussler, W. & Dillon, W. P. Geophys. Res. Lett. 18, 432–434 (1991).

    Article  ADS  Google Scholar 

  12. Dickens, G. R., O'Neil, J. R., Rea, D. K. & Owen, R. M. Paleoceanography 10, 965–971 (1995).

    Article  ADS  Google Scholar 

  13. Gornitz, V. & Fung, I. Glob. Biogeochem. Cycles 8, 335–347 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Bangs, N. L. B., Sawyer, D. S. & Golovchenko, X. Geology 21, 905–908 (1993).

    Article  ADS  CAS  Google Scholar 

  15. MacKay, M. E., Jarrard, R. D., Westbrook, G. K., Hyndman, R. D. & Shipboard Scientific Party of Ocean Drilling Program Leg 146 Geology 22, 459–462 (1994).

    Article  ADS  Google Scholar 

  16. Brown, K. M., Bangs, N. L., Froelich, P. N. & Kvenvolden, K. A. Earth Planet. Sci. Lett. 139, 471–483 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Froelich, P. N. et al. Proc. ODP Sci. Res. 141, 279–286 (1995).

    CAS  Google Scholar 

  18. Holbrook, W. S. et al. Science 273, 1840–1843 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Dillon, W. P. & Paull, C. K. in Natural Gas Hydrates, Properties, Occurrence and Recovery (ed. Cox, J. L.) 73–90 (Butterworth, Woburn, MA, 1983).

    Google Scholar 

  20. Paull, C. K. et al. Proc. ODP Init. Rep. 164, (in the press).

  21. Pettigrew, T. L. ODP Tech. Note 17, 1–291 (1992).

    Google Scholar 

  22. Miller, S. L. in Natural Gases in Marine Sediments (ed. Kaplan, I. R.) 151–177 (Plenum, New York, 1974).

    Book  Google Scholar 

  23. Handa, Y. P. J. Phys. Chem. 94, 2652–2657 (1990).

    Article  CAS  Google Scholar 

  24. Duan, Z., Møller, N., Greenberg, J. & Weare, J. H. Geochim. Cosmochim. Acta 56, 1451–1460 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Beck, R. J. Oil Gas J. 94, 57–77 (1996).

    Google Scholar 

  26. Broecker, W. S. & Peng, T.-H. in The Global Carbon Cycle (ed. Heimann, M.) 95–115 (NATO ASI Ser. I Vol. 15, Springer, Berlin, 1993).

    Book  Google Scholar 

  27. Kvenvolden, K. A., Barnard, L. A. & Cameron, D. H. Init. Rep. DSDP 76, 367–375 (1983).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickens, G., Paull, C. & Wallace, P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385, 426–428 (1997). https://doi.org/10.1038/385426a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385426a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing