Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele

Abstract

THE endothelial cell-specific vascular endothelial growth factor (VEGF)1–5 and its cellular receptors Flt-1 (refs 6,7) and Flk-1 (refs 8,9) have been implicated in the formation of the embryonic vasculature. This is suggested by their colocalized expression during embryogenesis10,11 and the impaired vessel formation in Flk-1 (ref. 12) and Flt-1 (ref. 13) deficient embryos. However, because Flt-1 also binds placental growth factor14,15, a VEGF homologue, the precise role of VEGF was unknown. Here we report that formation of blood vessels was abnormal, but not abolished, in heterozygous VEGF-deficient (VEGF+/-) embryos, generated by aggregation of embryonic stem (ES) cells with tetraploid embryos (T-ES)16,17, and even more impaired in homozygous VEGF-deficient (VEGF-/-) T-ES embryos, resulting in death at mid-gestation. Similar phenotypes were observed in F1-VEGF-/- embryos, generated by germline transmission. We believe that this heterozygous lethal phenotype, which differs from the homozygous lethality in VEGF-receptor-deficient embryos, is unprecedented for a targeted autosomal gene inacti-vation, and is indicative of a tight dose-dependent regulation of embryonic vessel development by VEGF.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Klagsbrun, M. & Soker, S. Curr. Biol. 3, 699–702 (1993).

    Article  CAS  Google Scholar 

  2. Dvorak, H. F., Brown, L. F., Detmar, M. & Dvorak, A. M. Am. J. Path. 146, 1029–1039 (1995).

    CAS  PubMed  Google Scholar 

  3. Plate, K. H., Breier, G. & Risau, W. Brain Path. 4, 207–218 (1994).

    Article  CAS  Google Scholar 

  4. Neufeld, G., Tessler, S., Gitay-Goren, H., Cohen, T. & Levi, B-Z. Prog. Growth Factor Res. 5, 89–97 (1994).

    Article  CAS  Google Scholar 

  5. Ferrara, N. Trends cardiovasc. Med. 3, 244–250 (1993).

    Article  CAS  Google Scholar 

  6. Shibuya, M. et al. Oncogene 5, 519–524 (1990).

    CAS  Google Scholar 

  7. Devries, C. et al. Science 255, 989–991 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Millauer, B. et al. Cell 72, 835–846 (1993).

    Article  CAS  Google Scholar 

  9. Mustonen, T. & Alitalo, K. J. Cell Biol. 129, 895–898 (1995).

    Article  CAS  Google Scholar 

  10. Breier, G., Albrecht, U., Sterrer, S. & Risau, W. Development 114, 521–532 (1992).

    CAS  Google Scholar 

  11. Breier, G., Clauss, M. & Risau, W. Devl. Dynam. 204, 228–239 (1995).

    Article  CAS  Google Scholar 

  12. Shalaby, F. et al. Nature 376, 62–66 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Fong, G.-H., Rossant, J., Gertsenstein, M. & Breitman, M. L. Nature 376, 66–70 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P. & Persico, M. G. Proc. natn. Acad. Sci. U.S.A. 88, 9276–9271 (1991).

    Article  ADS  Google Scholar 

  15. Park, J. E., Chen, H. H., Winer, J., Houck, K. A. & Ferrara, N. J. biol. Chem. 269, 25646–25654 (1994).

    CAS  Google Scholar 

  16. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Proc. natn. Acad. Sci. U.S.A. 90, 8424–8428 (1993).

    Article  ADS  CAS  Google Scholar 

  17. Nagy, A. & Rossant, J. in Gene targeting. A Practical Approach (ed. Joyner, A. L) 147–180 (IRL, Oxford, 1994).

    Google Scholar 

  18. Tischer, E. et al. J. biol. Chem. 266, 11947–11954 (1991).

    CAS  PubMed  Google Scholar 

  19. Claffey, K. P., Senger, D. R. & Spiegelman, B. M. Biochim. biophys. Acta 1246, 1–9 (1995).

    Article  Google Scholar 

  20. Pötgen, A. J. G. et al. J. biol. Chem. 269, 32879–32885 (1994).

    Google Scholar 

  21. Friedrich, G. & Soriano, P. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

  22. Puri, M., Rossant, J., Alitalo, K., Bernstein, A. & Partanen, J. EMBO J. 14, 5884–5891 (1995).

    Article  CAS  Google Scholar 

  23. Risau, W. & Flamme, I. A. Rev. Cell. Dev. Biol. 11, 73–92 (1995).

    Article  CAS  Google Scholar 

  24. Alon, T. et al. Nature Med. 1, 1024–1028 (1995).

    Article  CAS  Google Scholar 

  25. Tybulewicz, V. et al. Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  26. Carmeliet, P. et al. J. clin. Invest. 92, 2746–2755 (1993).

    Article  CAS  Google Scholar 

  27. Risau, W. et al. Development 102, 471–478 (1988).

    CAS  Google Scholar 

  28. Stavri, G. T. et al. FEBS Lett. 358, 311–315 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmeliet, P., Ferreira, V., Breier, G. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996). https://doi.org/10.1038/380435a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/380435a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing